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OVERVIEW 

 

The NIDA Center of Excellence for Computational Drug Abuse Research (www.CDARcenter.org, 
CDAR) is a joint initiative between the University of Pittsburgh (Pitt) and Carnegie Mellon University (CMU) 
under the leadership of Drs. Sean Xie and Ivet Bahar at Pitt and Eric Xing at CMU. The goal and mission 
of the CDAR Center during its first funding cycle has been to develop, implement and advance innovative 
technologies, and ensure the broad dissemination and usage of our data and tools to enhance and 
accelerate research in DA and related neurological disorders (ND), both in the local (Pittsburgh) area and 
nationwide. With these goals, the Center has become a leader in computational technology innovation 
and has successfully catalyzed synergistic collaborations between current and emerging researchers in 
the drug abuse (DA) research (DAR) area.  

The high productivity of the Center during the past term is evidenced by 143 publications, several of 
which were published in high profile journals. CDAR publications received >2,000 citations to date. 

During the next funding cycle, the Center plans to further develop, integrate, and significantly augment the 
utility of our tools to enable DA-domain-specific chemical-to-protein-to-genomics-to-therapeutic 
intervention translation, being now equipped with a broader arsenal of tools and a larger number of 
collaborations with experts in DAR. The renewed CDAR Center will have three Research Support Cores 
(Cores A-C), and a new Core, Core D, for supporting the Pilot/Feasibility Projects (F/PPs).  

Core A, or the Computational Chemogenomics Core for DA, will help address polydrug addiction and 
systems pharmacological challenges by developing new chemogenomics resources and computing tools 
and by centralizing the data collected/generated by Cores A-C into a Platform for Abused Drugs and 
Neurological Diseases Association (PANDA). PANDA will be a DA- and ND-domains-specific 
chemogenomics repository and will serve as a national resource powered by GPU-accelerated cloud 
computing to enhance DA data dissemination, knowledge acquisition, and efficient use of computing 
technology among the broader DAR community.  

Core B, or the Computational and Systems Biology Core, will develop methods and tools for 
mechanistic characterization of molecular-to-cellular events with special focus on neurotransmission 
events at the chemical synapses and systems-level responses to deficiencies in neurotransmission. In 
parallel, database-driven method and servers for designing effective intervention strategies will be 
developed which will take advantage of sequence, structure and pathway data. An innovative direction will 
be the development of a novel tool for assessing the pathogenicity of missense variants implicated in drug 
addiction.   

Core C, or the Computational Genomics Core will synergize the work from Cores A and B by leveraging 
genome-scale approaches for genome-wide discovery of new DA targets and markers using machine 
learning and deep learning methods.  

Cores A-C collaborate with 15 Funded Research Projects (FRPs) centered around three themes: (i) 
substance of abuse-induced disorders and adaptations; (ii) DA-related disorders, cognitive syndromes 
and inflammatory diseases; and (iii) dopamine/neurotransmitter-signaling events/defects implicated in DA 
development and treatment.   

The Administrative Core will continue to provide administrative support, using rules and policies 
established in the first term, in coordination with the Scientific Steering Committee (SSC) and 
consultation with an External Advisory Board (EAB).  

Overall, the Center’s overarching goal of translating advances in computational chemistry, biology, and 
genomics will accelerate the discovery of novel intervention methods for preventing, alleviating or treating 
drug addiction and associated NDs. 
  

http://www.cdarcenter.org/
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P30 EAB Annual Meeting Agenda* - October 17, 2019  
(*All times listed below are EST.  Locations of individual EAB members listed on page 5.)  

 
3:00 – 3:10 pm  Video conference setup (CVS Room, Salk Pavillion, 335 Sutherland Dr.) 

 (Light refreshments will be served.)  

3:10 – 3:20 pm Welcome by CDAR Center Dr. Sean Xie 
  
 Randall Smith, PhD, Professor and Senior Associate Dean, School of 

Pharmacy, University of Pittsburgh  
  
 Xiang-Qun (Sean) Xie, PhD, Director of CDAR Center & Professor and 

Associate Dean, Department of Pharmaceutical Sciences & Drug 
Discovery Institute, Department of Pharmaceutical Sciences, School of 
Pharmacy, University of Pittsburgh   

 

3:20 – 5:30 pm  CDAR Core Research Reports by Core PIs (all team members 
invited) 

3:20 – 3:55 pm Overview of CDAR Center: The First Funding Cycle & Beyond  
 by Dr. Xiang-Qun Xie 
 AdminCore Report: Training, Dissemination and Administration  
 by Dr. Terry McGuire (25 min + 10 minQ/A) 

3:55 – 4:30 pm  Core A Report: “Computational Chemogenomics & Systems 
Pharmacology for Drug Abuse and Neurodisorder 
Research” 
 by Xiang-Qun (Sean) Xie, MD, PhD, EMBA (Core A), 
Professor and Associate Dean, Department of 
 Pharmaceutical Sciences & Drug Discovery Institute, 
 Director of CDAR Center (25 + 10 min Q/A)  

 
4:30 – 5:05 pm  Core B Report: “Molecular, Cellular and Systems Biology Methods  

and Tools for Computational Drug Abuse Research” 
 by Ivet Bahar, PhD (Core B), Distinguished 
Professor & JK Vries Chair, Department of 
Computational & Systems Biology, Associate Director 
of University of Pittsburgh Drug Discovery Institute (25 
+ 10 min Q/A) 

5:05 – 5:40 pm Core C Report: “Understanding Drug Abuse Using Deep Machine 
Learning Approaches” 

  by Eric Xing, PhD (Core C), Professor, Machine 
Learning Department & Language Technology Institute 
& Computer Science Department, Associate Head of 
the Machine Learning Department, Carnegie Mellon 
University (25 + 10 min Q/A) 

 
5:40 – 7:00 pm  Break (10 min) and Skype Meeting of EAB Members Only (70 min)  

(EAB Chairperson: Dr. Nurulain Zaveri)  

7:00 – 8:00 pm Meeting of EAB members with the CDAR Leadership (60 min) 
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EAB/SAB Members 
 

Remote Skype Attendance Locations of EAB Members  
Eric M. Billings, PhD – located in Bethesda, MD 

Barry Gold, PhD – located in Crozet, VA 

Tarek Leil, PhD – located in Princeton, NJ 

Ying Mu, PhD, DABT – located in Laurel, MD 

Chris Waller, PhD – located in Brookline, MA 

Zheng-Xiong Xi, MD, PhD – located in Baltimore, MD 

Nurulain T. Zaveri, PhD – located in Mountain View, CA 
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Eric M. Billings, PhD 

Former Director & Staff Scientist, NIH NHLBI 
Bioinformatics and Systems Biology Core Facility 
Clinical Research Center, Bethesda, MD 20892 
Email: ericbillings1@gmail.com  
 

Dr. Eric Billings received his Physics B.S. degree from the University 
of California, Santa Cruz; Ph.D. in Biophysics from the School of Arts 
and Sciences, University of Connecticut in 1995; and post-doctoral 
training at the NIH as a National Research Council Fellow.  Currently, 
he is a Staff Scientist in the Division of Intramural Research (DIR) at the 

National Institutes of Health. Dr. Billings is an expert in computational strategies to analyze 
and simulate biological processes. He has addressed biological questions ranging from the 
biophysics of enzyme catalysis to genetic drift in patient cohorts.  His research focuses on 
integrating the analysis of the distinct data types found in biological systems. 

Dr. Billings’ post-doctoral training in CHARMM development centered on hybrid QM/MM 
molecular modeling methods.  In order to provide the computational power necessary for this 
type of calculation, he and his post-doctoral mentor developed NIH’s first commodity 
computer cluster, LoBoS (Lots of Boxes on Shelves).  This system was the prototype for 
NIH’s modern scientific cluster.  During this time, he co-founded the NIH Molecular Modeling 
Interest Group. 

He was the founding Director of the Genomics and Bioinformatics Core Facility which 
processed samples and analyzed data from RNA and proteomic microarrays, and partnered 
with Affymetrix’ R&D to implement robotic sample processing for transcriptomic and genomic 
arrays.  The Core developed novel methods to assess transcript profiling, gene regulation, 
regulatory motif discovery, mutational effects and perform genome wide association studies.   

He was the founding Director of the Bioinformatics and Systems Biology Facility which 
supported intramural research requiring integration of ‘Omics data with public data and prior 
knowledge.  The facility developed methods for RNA analysis, meta-analysis of public data, 
pathway identification and a quantitative tool for the bench biologist to identify pathways of 
interest, simulate their behavior and compare model results to empirical data.  During this 
time, he co-chaired the NIH Systems Biology Interest Group. 

Prior to his scientific career, Dr. Billings worked in the computer industry.  He joined a 
personal computer start-up company, Sirius Systems, and moved to Digital Equipment 
Corporation where he managed a team of software engineers supporting a Fortune 50 
company.  Dr. Billings has taught at American University and continues to mentor high 
school, college and post-baccalaureate students. 
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Barry Gold, PhD 

Professor Emeritus, Department of Pharmaceutical Sciences 

 
UNIVERSITY OF PITTSBURGH 
Phone: 412 -480-5326 
Email: goldbi@pitt.edu 
 
  
 
 

 
Dr. Barry Gold was Professor and Chair of the Department of Pharmaceutical Sciences at 
the University of Pittsburgh. He also served as a co-Director of the University of Pittsburgh 
Drug Discovery Institute and was a member of the University of Pittsburgh Cancer Institute. 
Before moving to Pittsburgh, he was Professor and Associate Director for Basic Research at 
the University of Nebraska Medical Center’s Eppley Cancer Center. He did his 
undergraduate, graduate and postgraduate studies in organic chemistry at Hunter College of 
the City University of New York, the University of Nebraska-Lincoln and the University of 
Toronto, respectively. His research interests are related to: (1) The design, synthesis and 
characterization of heterocyclic C-glycoside molecules that sequence-specifically bind to 
duplex DNA via triple helix formation. The goal of this work is to gene specifically regulation 
protein expression and probe transcriptional regulatory sequences; (2) The generation of 
anticancer drugs that efficiently form DNA lesions that are cytotoxic but not mutagenic in 
order to minimize secondary cancers; and (3) The development of small molecule inhibitors 
of specific DNA repair pathways that are involved in tumor resistance to anticancer drugs; 
and (4) The etiology on somatic mutations in tumor suppressor genes and oncogenes related 
to the development of cancer. He was active in the training of undergraduate, graduate and 
post-graduate students and taught courses in medicinal chemistry, biochemistry, biophysical 
biochemistry, chemical carcinogenesis, nucleic acids and cancer research. 

Dr. Gold has published more than 140 peer-reviewed papers and been the lead 
inventor on three patents. He has been a member of the ACS since 1969. In 2008, he served 
as the Chair for the 31st National Medicinal Chemistry Symposium that was held in 
Pittsburgh. Previously, he has been on the executive committee of the ACS Division of 
Chemical Toxiciology. He has reviewed grants for a number of NIH study sections and for 
center and program project grants. He is on the editorial advisory boards of Burger’s 
Medicinal Chemistry and Drug Discovery and Future Medicinal Chemistry, and serves as a 
scientific advisor to KeViRx LLC a small drug development company.Dr. Gold remains active, 
in efforts to increase the number of under-represented minorities in science. He has served 
as a mentor for high school teachers as part of the mentoring program of the Society for the 
Advancement of Native Americans and Chicanos in Science (SACNAS) and is on the 
Minority Affairs Committee of the Biophysical Society.  
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Tarek A. Leil, PhD 

Group Director – Quantitative Clinical Pharmacology 
Clinical Pharmacology & Pharmacometrics  
 
BRISTOL-MYERS SQUIBB 
Room E.2140C 
Rt. 206 & Province Line Road 
Princeton, NJ 08540-4000      
Tel: (609) 252-6502 
Email: tarek.leil@bms.com 
 

Tarek Leil is currently the head of the Quantitative Clinical Pharmacology (QCP) group 

within Clinical Pharmacology and Pharmacometrics (CP&P) at Bristol-Myers Squibb (BMS). 

The QCP group at BMS uses model based approaches, including quantitative systems 

pharmacology (QSP), physiologically based PK (PBPK), and model-based meta-analysis 

(MBMA), to integrate clinical and non-clinical data using models that summarize knowledge 

and generate actionable predictions. These predictions can be used to help with decision 

making in drug discovery and clinical development, to optimize the design of patient clinical 

trials, and to facilitate communications with regulatory authorities. Prior to joining BMS in 

2011, Dr. Leil worked at Pfizer in the Department of Clinical Pharmacology. Dr. Leil and the 

QCP group have numerous recent publications and presentations demonstrating the utility 

of Pharmacometrics and Systems Pharmacology in Pharmaceutical R&D. 

 

 

 

  

mailto:tarekleil@yahoo.com
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Ying Mu, PhD, DABT 
CEO  
 
EagleImmune, Inc. 
11361 Bishops Gate Ln 
Laurel, MD 20723 
Phone: 724-759-3066 (Cell) 
Email: yingm6@gmail.com  
 
 

 

Accomplished and board certified toxicologist at the FDA (former FDA officer) performed 

regulatory consulting and research, focusing on the evaluation of toxicological adverse 

events and biocompatibility of regulated products; conducting innovative research such as 

biomarker discovery and development through collaboration with internal and external 

scientists, specifically for allergic risks assessment comprised of two-arm approaches, in vitro 

and in silico, and that of clinical monitoring for applications in both premarket and post market; 

the effort is also intended to overcome the limitations of animal based tests toward the 

improvement of regulatory and clinical decision-making. As an effective Biocompatibility 

Standard Working Group member, Dr. Mu participated regulatory standard/guidance 

development with providing a broad array of knowledge in toxicology, biocompatibility, 

biomarkers, immunology, biomaterials, orthopedics, stem cell, tissue engineering, molecular 

biology, pre-market risk assessment and post-market safety evaluation, regulatory review 

process and the politics. Multilingual: Chinese, Japanese and English. 

The founder of EagleImmune, started up in Maryland in June 2017. 

 
  



11 

 

 

Chris L. Waller, PhD 

 
Vice President-Business Consulting and Chief Scientist 
EPAM Systems, Inc.  
 
M: 860-501-7113 
 
 
 
 
 
 
 

Dr. Chris L. Waller is Vice President and Chief Scientist at EPAM Systems, Inc. 
 
Dr. Waller was previously employed as Executive Director-Scientific Modeling Platforms by 
Merck and Co, Inc., Senior Director-Enterprise Architecture, Senior Director-Health Care 
Informatics, and Senior Director-Chemistry Informatics by Pfizer, Inc., and Director-
Cheminformatics by Eli Lilly and Co., Inc.  
 
He holds an Adjunct Full Professor position in the School of Pharmacy at the University of 
North Carolina-Chapel Hill where he lectures on big data, analytics, and drug design, is part-
time faculty at Northeastern where he lectures on leadership in the College of Professional 
Studies, and serves as an advisor on data science related issues to the Hub at Davidson 
College, a data science incubator. 
 
He is a founding member and serves on the board of the Pistoia Alliance, a life sciences 
industry pre-competitive collaboration consortium. 
 
He received his undergraduate degree from Davidson College and a doctorate degree from 
the University of North Carolina – Chapel Hill. 
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Zheng-Xiong Xi, MD, PhD 
Staff Scientist (2) 
Intramural Research Program 
 
NATIONAL INSTITUTE ON DRUG ABUSE, NIH 
Phone: 443-740-2517 (Office), 443-668-3711 (Cell) 
Email: ZXi@intra.nida.nih.gov  
 
 
 
 
 
 
 

I am a senior Staff Scientist (level 2), Chief of Addiction Biology Unit, Molecular Targets and 
Medications Discovery Branch, National Institute on Drug Abuse (NIDA), Intramural 
Research Program (IRP). In the past 30 years, my research has been focused on brain 
mechanisms underlying drug reward and addiction and on mechanism-based medication 
development for treatment of addiction. The major expertise is regarding behavioral 
pharmacology, neurochemistry and optogenetics. Rat and mouse self-administration, 
neuroimaging, optogenetics, and in vivo microdialysis with HPLC are the core experimental 
techniques in the lab. The major findings include: 1) the classical inhibitory neurotransmitter 
receptor – GABAA receptor may also act as an excitatory neurotransmitter in the brain in 
some cases in 1990s; 2) identification of mGluR2 as a major glutamate autoreceptor 
modulating presynaptic glutamate release in 2000s; 3) discovery of brain cannabinoid CB2 
receptor as a new potential target in medication development for treatment of addiction in 
2010s; 4) identification of several addiction-related biomarkers (reduced D3 receptor or 
mGluR2 availability, polymorphisms at the T394 phosphorylation site of mu opioid receptor) 
in recent studies; and 5) discovery of several non-addictive phytocannabinoids such as 
cannabidiol, beta-caryophyllene and delt9-THCV may be promising medical cannabinoids 
for the treatment of substance use disorders. This research work has led to over 100 
publications, including many of them published in such high-impact journals as Nature 
Nanotechnology, Nature Neuroscience, Cell Reports, PNAS, Neuropsychopharmacology, 
Journal of Neuroscience, etc. They are cited by over 5000. Some of them are reported by 
such news media and magazines as Discovery, Time, etc.  
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Nurulain T. Zaveri, PhD  
Founder, President and Chief Scientific Officer  
Principal Investigator  
 
ASTRAEA THERAPEUTICS  
320 Logue Avenue  
Suites 120/131/142  
Mountain View, CA. 94043  
Phone: 650-254-0786 (Office)  
Email: nurulain@astraeatherapeutics.com  
Website: www.astraeatherapeutics.com 

 

Dr. Zaveri is the Founder, President and Chief Scientific Officer of Astraea Therapeutics, a 
preclinical-stage company she founded in 2009, whose mission is medication development 
for under-served diseases of the central nervous system (such as substance abuse and 
addiction, chronic pain and Parkinson’s disease). A PhD medicinal chemist by training, Dr. 
Zaveri is a seasoned pharmaceutical leader and recognized expert in the field of G-protein 
coupled receptor-targeted- and ion channel-targeted drug discovery for CNS medications. 
Pioneering discoveries from her laboratory have contributed to novel target validation for 
substance use disorders and pain treatment, and are being advanced into medication 
development. Dr. Zaveri has been a leader in the discovery and rational design of nociceptin 
opioid receptor ligands, under development for substance abuse treatment and chronic pain. 
Dr. Zaveri’s discovery of the first truly high affinity and selective compounds targeted to the 
alpha3beta4 nicotinic ion channel receptors garnered tremendous interest in the nicotine 
addiction research arena and are being developed as smoking cessation medications. Before 
her entrepreneurial venture at Astraea Therapeutics, Dr. Zaveri was Principal Investigator 
and Director of the Drug Discovery Program at a nonprofit research institute for 16 years. Dr. 
Zaveri has been the Chair of the Drug Discovery and Development Interface (DDDI) Section 
of the American Association of Pharmaceutical Scientists (AAPS) and is an AAPS Fellow. 
Dr. Zaveri also serves on several NIH grant review committees. Dr. Zaveri is the lead inventor 
on over 15 patents and has authored over 66 research publications and 10 reviews/book 
chapters in fields of her research. 
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CORE A PI – SHORT BIOGRAPHY 

Xiang-Qun (Sean) Xie, MD, PhD, EMBA  
Associate Dean of the School of Pharmacy  
Professor of Pharmaceutical Sciences/Drug Discovery Institute  
Director of National Center of Excellence for Computational Drug Abuse 
Research and Computational Chemogenomics Screen Center 
School of Pharmacy, University of Pittsburgh  

 
Phone: 412-383-5276  
Email: Xix15@pitt.edu 

 
Dr. Xiang-Qun (Sean) Xie is Associate Dean for Research Innovation of the School of Pharmacy and 
Professor of Pharmaceutical Sciences/Drug Discovery Institute.  He is a Director/PI of NIH National 
Center of Excellence for CDAR (www.CDARCenter.org). He is also a Founding Director of Computational 
Chemical Genomics Screening (CCGS) Center (www.CBLigand.org/CCGS) and a PI of an integrated 
Medicinal Chemistry Biology Laboratory of CompuGroup, BioGroup and ChemGroup. In addition, he 
serves as a Charter Member of the Science Board to the US FDA. He holds joint positions at Dept. of 
Computational Biology and Dept. of Structural Biology, and Pitt Cancer Institute MT/DD Program. He is 
an Editorial Advisory Board member for AAPS Journal. In the past, he served as a Chartered Member of 
NIH BPNS Study Section, and an ad hoc expert reviewer for UK MRC foundation; the Wellcome Trust 
Fund; the Netherland Organization for Scientific Research Council; the Austrian Science Fund (FWF); 
and the Chinese Natural Science Foundation.   

Xie team is known for its pioneering research on development of diseases-specific chemogenomics 
knowledgebases, a platform of “Big Data to Knowledge” computational chemogenomics target 
identification and system pharmacology for translational research with over 150 publications and 10 
patents. His work on Alzheimer’s disease database was on ACS JCIM cover page story. The innovative 
work includes the GPU-accelerated cloud-computing machine-learning TargetHunter© program for drug 
target identification (AAPS J special issue). His recent publications include computing technology 
development as illustrated: i) DAKB-GPCRs. An Integrated Computational Platform for Drug Abuse 
Related GPCRs (J Chem Inf Model 2019, 59 (4), 1283-1289); ii) Analysis of substance use and its 
outcomes by machine learning I. Childhood evaluation of liability to substance use disorder (Drug and 
Alcohol Dependence 2019 DOI:10.1016/j.drugalcdep.2019.107605); iii) Prediction of Orthosteric and 
Allosteric Regulations on Cannabinoid Receptors Using Supervised Machine Learning Classifiers (Mol 
Pharm 2019, 16 (6), 2605-2615); and iv) Deep convolutional generative adversarial network (dcGAN) 
models for screening and design of small molecules targeting cannabinoid receptors. (Mol. Pharm. 2019. 
DOI: 10.1021/acs.molpharmaceut.9b00500); as well as the applications as illustrated below: i) Analysis 
of substance use and its outcomes by machine learning I. Childhood evaluation of liability to substance 
use disorder (Drug And Alcohol Depend 2019); ii) Prediction of drug-drug interactions between opioids 
and overdosed benzodiazepines using physiologically-based pharmacokinetic (PBPK) modeling and 
simulation (Drugs R & D 2019, 19 (3), 297-305); iii) Insight of captagon abuse by chemogenomics 
knowledgebase-guided systems pharmacology Target Mapping Analyses (Sci Rep 2019, 9 (1), 2268); 
iv) Computational Systems Pharmacology-Target Mapping for Fentanyl-Laced Cocaine Overdose (ACS 
Chem Neurosci 2019, 10 (8), 3486-3499); v) the first discovery of INK4C chemical inhibitors for stem cell 
expansion (Nature Comm 2015 and Scientific Report 2015); the first discovery of Sequestome-1 ZZ 
domain chemical inhibitors with therapeutics potential for tumors and neurological diseases (Nature 
Leukemia 2016; Nature Comm, 2017, PNAS 2018); and vi) over 50 cannabinoid publications of 
discover/report novel cannabinoid receptor CB2 functional ligands for cocaine attention, kidney fibrosis, 
multiple myeloma and osteoporosis (JMC 2013, Mol. Carcinog 2015, Kidney Ubt, 2918). He was a 
recipient of 2014 AAPS Award for Outstanding Research Achievements. 

Dr. Xie received his MD in Pharmacy from the Second Military Medical University in Shanghai China, his 
PhD in Medicinal Chemistry from the School of Pharmacy University of Connecticut, and his EMBA 
degree from the School of Business Administration, University of Connecticut, USA. 

  

mailto:Xix15@pitt.edu
http://www.cdarcenter.org/
http://www.cbligand.org/CCGS
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CORE A: ABSTRACT 

Computational Chemogenomics & Systems Pharmacology for Drug 

Abuse and Neurodisorder Research 

*Xiang-Qun (Sean) Xie, MD, PhD, EMBA, Junmei Wang, PhD, Lirong Wang, PhD, Zhiwei Feng, PhD, 
Ying Xue, PhD 

National Center of Excellence for Computational Drug Abuse Research (CDAR);  
Department of Pharmaceutical Sciences/Drug Discovery Institute,  

Computational Chemical Genomics Screening (CCGS) Center, School of Pharmacy;  
University of Pittsburgh, Pittsburgh, PA 15261, USA. 

Core A, i.e., Computational Chemogenomics Core for Drug Abuse (CC4DA), has as its goal to address 
existing fundamental challenges in drug abuse (DA)/neurodisorders and medication research by 
systematically investigating interactions among chemical compounds and DA targets (proteins and 
signaling pathways). During the 1st funding year, we have advanced and expanded our developed 
computational algorithms and tools. We have made a magnificent progress to achieve the goals in the first 
funding cycle by publishing 58 peer-reviewed papers (41 are directly related to DA and DA-associated 
NDs). All of these enhance the effectiveness of ongoing research and collaborations with the selected 
funded-research projects (FRPs) and also stimulate feasible pilot projects in the general realm of DA and 
neurological disorders. Under the leadership of PI Xie:  

• We (or Core A) have continued to enrich the developed online chemogenomics knowledgebases in 
drug abuse (DA) and DA-associated neurological disorders. An alpha version of a new integrated 
computer platform - Platform of Abused-Drugs and Neurological Diseases Association (PANDA) 
has been constructed to integrate multiple (chemogenomics) databases and advanced computational 
technologies from all Cores to address the challenging problems in (poly)drug addiction and to 
collectively advance DAR by supporting the FRPs, guiding the P/FPs, and serving the broader DA/ND 
community.  

• We have advanced our established new computational platform DAKB-GPCRs1 and algorithms and 
tools (e.g., computational systems pharmacology-target mapping2 and machine learning methods3-5 for 
modeling abused drugs (e.g. opioids,6 Captagon7) and DA target interactions (DTI), and to predict DA 
treatments against polyaddiction (e.g., fentanyl-laced cocaine overdose2).     

• We have developed a set of ML-based models to predict DA clinical outcomes in combination with 
systems pharmacology method for assisting in DA prevention.3-4 We are utilizing physiology-based 
pharmacokinetics (PBPK) modeling and pharmacometrics approaches to quantitatively study drug-
drug interactions (DDIs) between opioids and benzodiazepines.8   

Selected Publications:  
1. Chen, M.; Jing, Y.; Wang, L.; Feng, Z.; Xie, X. Q., DAKB-GPCRs: An Integrated Computational Platform for Drug 

Abuse Related GPCRs. J Chem Inf Model 2019, 59 (4), 1283-1289. 
2. Cheng, J.; Wang, S.; Lin, W.; Wu, N.; Wang, Y.; Chen, M.; Xie, X. Q.; Feng, Z., Computational Systems 

Pharmacology-Target Mapping for Fentanyl-Laced Cocaine Overdose. ACS Chem Neurosci 2019, 10 (8), 3486-
3499. 

3. Hu, Z.; Jing, Y.; Xue, Y.; Fan, P.; Wang, L.; Tarter, R.; Kirisci, L.; Vanyukov, M. M.; Wang, J.; Xie, X. Q., Analysis of 
substance use and its outcomes by machine learning: II. Derivation and prediction of the trajectory of substance 
use severity. Drug and Alcohol Dependence 2019, In press. DOI:10.1016/j.drugalcdep.2019.107605 

4. Jing, Y.; Hu, Z.; Fan, P.; Xue, Y.; Wang, L.; Tarter, R.; Kirisci, L.; Vanyukov, M. M.; Wang, J.; Xie, X.-Q., Analysis of 
substance use and its outcomes by machine learning I. Childhood evaluation of liability to substance use 
disorder. Drug And Alcohol Depend 2019, In Press. DOI:10.1016/j.drugalcdep.2019.107604 

5. Bian, Y.; Jing, Y.; Wang, L.; Ma, S.; Jun, J. J.; Xie, X. Q., Prediction of Orthosteric and Allosteric Regulations on 
Cannabinoid Receptors Using Supervised Machine Learning Classifiers. Mol Pharm 2019, 16 (6), 2605-2615. 

6. Wu, X.; Xie, S.; Wang, L.; Fan, P.; Ge, S.; Xie, X. Q.; Wu, W., A computational strategy for finding novel targets 
and therapeutic compounds for opioid dependence. PLoS One 2018, 13 (11), e0207027. 

7. Wu, N.; Feng, Z.; He, X.; Kwon, W.; Wang, J.; Xie, X. Q., Insight of Captagon Abuse by Chemogenomics 
Knowledgebase-guided Systems Pharmacology Target Mapping Analyses. Sci Rep 2019, 9 (1), 2268. 

8. Ji, B.; Liu, S.; Xue, Y.; He, X.; Man, V. H.; Xie, X. Q.; Wang, J., Prediction of drug-drug interactions between opioids 
and overdosed benzodiazepines using physiologically-based pharmacokinetic (PBPK) modeling and 
simulation. Drugs R & D 2019, 19 (3), 297-305. 
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CORE A: HIGHLIGHTS – 8/2014 - 8/2019 
Construction of an integrated computer platform – 
PANDA. In conjunction with Core B and Core C, we have 
finished the construction of an alpha version of a computer 
Platform of Abused drugs and Neurological Diseases 
Association (PANDA). The platform integrates multiple 
(chemogenomics) databases and advanced computational 
technologies from all Cores to address the challenging 
problems in (poly)drug addiction and to collectively advance 
DAR by supporting the FRPs, guiding the P/FPs, and serving 
the broader DA/ND community.  
(1) Constructed a new platform DAKB-GPCRs and 
development of new algorithm “CSP-Target Mapping”: 
DAKB-GPCRs is an Integrated computational platform for 

drug abuse related GPCRs.1 And “CSP-Target Mapping”, 

is a new GPU-accelerated deep/machine learning-based 
algorithm tool for target prediction, classification, and 
mapping.1-2 We applied our new platform and algorithm to 
study fentanyl-laced cocaine overdose2 and Captagon 

abuse3. Our studies provided the potential abuse mechanism for these illicit drugs, and also provide the 

potential targets, off-targets, and therapeutics targets. 

(2) Built predictive analytics models for DA prevention. In collaboration with R. Tarter, Director of 
CEDAR (CEDAR center was funded by NIDA), we constructed a set of ML/DL-based predictive models 
using the behavioral and psychological descriptors collected by CEDAR. The best model, which has 
achieved an area under the curve of receiver operating characteristic (ROC) of 0.71 using the data 
collected when the subjects are only at ages of 10 and 11. This model has a greater potential since 
substance abuse prevention measures will be taken when subjects are very young. So far two “interesting 
and important” [quote from editor] papers on drug abuse prevention have been accepted for publication 
in Drug & Alcohol Dependence,4-5 

(3) Investigated drug-drug interactions (DDI) between opioids and benzodiazepines. We have 
conducted DDI studies using the population PK/PD and PBPK modeling in combination with molecular-
level docking and physics-based binding free energy calculations. The PK parameters and covariates 
identified during population PK/PD analysis could be used to achieve precision medicine of DA treatment 
for individual patients. Our work studying DDI for opioid drugs has been published in Drugs in R&D6 and 
another manuscript submitted.   

References 

1. Chen, M.; Jing, Y.; Wang, L.; Feng, Z.; Xie, X.-Q., DAKB-GPCRs: An Integrated Computational Platform for 
Drug Abuse Related GPCRs. Journal of chemical information modeling 2019, 59 (4), 1283-1289. (PDF) 
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2268. (PDF) 
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       simulation. Drugs R & D 2019, 19. (PDF)  

The In-Development Platform of Abused- Drugs 
and Neurological Diseases Association 
(PANDA). 
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Dr. Ivet Bahar is a Distinguished Professor, the John K. Vries Chair, and the Founding Chair 
in the Department of Computational & Systems Biology, at the University of Pittsburgh School 
of Medicine. She currently serves as  Director/Principal Investigator of three multi-institutional 
NIH Centers (NIGMS-funded MMBioS National Center for Multiscale Modeling of Biological 
Systems, NHGRI-funded Big Data to Knowledge (BD2K) Center on Causal Modeling and 
Discovery (joint PI with Greg Cooper, Biomedical Informatics), and NIDA-funded CDAR 
(Computational Drug Abuse Research Center; Joint PI with Drs. Xie (Pitt Pharmacy) and 
Xing (CMU Machine Learning)); Associate Director, University of Pittsburgh Drug Discovery 
Institute; Founding Director (2005 – 2009), Executive Committee Member, and T32 co-PI of 
Carnegie Mellon University/Pitt PhD Program in Computational Biology.  
 
Dr. Bahar is known as the developer of elastic network models for biomolecular systems 
dynamics, which found wide applications in molecular biophysics and computational and 
structural biology. Her current research areas include multiscale dynamics of biomolecular 
systems dynamics with applications to cell signaling, regulation and survival events (e.g. 
autophagy) in the central nervous system and immune system and neurodegenerative 
disorders; mechanisms of function of neurotransmitter transporters, evolution of proteins’ 
sequence, structure, dynamics and function; protein-protein/ligand/lipid interactions, and 
supramolecular machinery and allostery; computer-aided drug discovery at both molecular 
and systems pharmacology levels.  Dr. Bahar has co-authored in more than 250 papers in 
scientific journals, and her work has been cited more than 21,000 times to date (H-Index = 
73). 
 
Dr. Bahar is an elected member of the European Molecular Biology Organization (EMBO); 
Associate Editor of Proteins (Wiley); and editorial board member of scientific journals such 
as Structure (Cell Press), and Scientific Reports (Nature PBG). She regularly serves as a 
member of the NIH Biomedical Library and Informatics Review Committee (BLIRC) and is an 
invited speaker or keynote speaker at numerous international and national meetings, 
including European Molecular Biology Organization, Centre Européen de Calcul Atomique 
et Moléculaire, Gordon Research Conferences, and Annual meetings of the Biophysical 
Society and the American Chemical Society. 
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CORE B: ABSTRACT 
 

Molecular, Cellular & Systems Biology Methods and Tools for CDAR 
Ivet Bahar, Bing Liu, Mary H Cheng, Jiyoung Lee, James Krieger, Pemra Doruker & Fen Pei  

Department of Computational & Systems Biology, School of Medicine, U of Pittsburgh 

 
Recent years have seen a breakthrough in the elucidation of the structure and dynamics of 
membrane proteins. Sodium coupled neurotransmitter transporters are transmembrane proteins 
that are essential regulators of neurotransmission in the brain, and their malfunction is implicated 
in several neurological disorders. We have now made significant progress in understanding the 
complex machinery of these secondary transporters, the way they undergo cooperative structural 
changes between outward-facing and inward-facing states for transporting their substrate and 
sodium ions, while they also permit for chloride channeling1. We will present recent progress 
made in the elucidation of the mechanism of function of two major groups of transporters and 
their alteration by ligand binding and/or multimerization: Glutamate transporters, exemplified by 
the archaeal transporter GltPh which served as a useful model for understanding the dynamics of 
excitatory amino acid transporters (EAATs); and dopamine transporters as an important member 
of transporters sharing the LeuT fold.2-4 We used a combination of elastic network models and 
advanced molecular dynamics simulations to elucidate how the multidomain structure or 
multimerization properties are essential to altering not only their conformational dynamics, but 
also the coupled membrane remodeling in the synapse. We furthermore examined the allosteric 
dynamics of crucial signalling proteins including: lipoxygenase5,6, PINK17, and KLF48, and 
assessed the absued drug associaed targets and pathways at systems level9. Results highlight 
the significance of adopting multi-scale approaches, in conjunction with experimental data for 
unravelling intermediates and inter- and intramolecular couplings that could not be otherwise 
inferred from static structures. Finally, we have developed two versatile web servers for analyzing 
shared signature dynamics tempered by local fluctuations10 and automatic pharmacophore 
modeling11.  

Publications:  

1. Cheng MH, Bahar I. (2019) Monoamine transporters: structure, intrinsic dynamics and allosteric regulation. 
Nature Structural & Molecular Biology 26, 545–556. (PDF) 
2. Lee JY, et al. (2019) Druggability simulations and X-ray crystallography reveal a ligand-binding site in the 
GluA3 AMPA receptor N-terminal domain. Structure 27: 241-252. (PDF) 
3. Ponzoni L, et al. (2018) Shared dynamics of LeuT superfamily members and allosteric differentiation by 
structural irregularities and multimerization. Philos Trans R Soc Lond B Biol Sci 373: 1749. (PDF) 
4. Cheng MH, et al. (2019) Trimerization of dopamine transporter triggered by AIM-100 binding: molecular 
mechanisms and effect of mutations. Neuropharmacology [Epub ahead of print] (PDF) 
5. Anthonymuthu T, et al. (2018) Empowerment of 15-lipoxygenase catalytic competence in selective 
oxidation of membrane ETE-PE to ferroptotic death signals, HpETE-PE. J Am Chem Soc 2018, 140 (51): 
17835-17839. (PDF) 
6. Mikulska-Ruminska K, et al. (2019) Characterization of differential dynamics, specificity, and allostery of 
lipoxygenase family members. J Chem Inf Model. [Epub ahead of print] (PDF) 
7. Wang K, et al. (2018) PINK1 interacts with VCP/p97 and activates PKA to promote NSFL1C/p47 
phosphorylation and dendritic arborization in neurons. eNeuro 5 (6) ENEURO.0466-18.2018 (PDF) 
8. Zhou Z, et al. (2019). A novel small-molecule antagonizes PRMT5-mediated KLF4 methylation for targeted 
therapy. (2019) EBioMedicine 19: 30312-30313. (PDF)  
9. Pei F. et al. (2019) Quantitative systems pharmacological analysis of drugs of abuse reveals the pleiotropy 
of their targets and the effector role of mTORC1. Front. Pharmacol., 10, 1-16. (PDF) 
10. Zhang S, et al. (2019). Shared signature dynamics tempered by local fluctuations enables fold 
adaptability and specificity. Mol Biol Evol, 36(9), 2053-2068. (PDF) 
11. Lee J, et al. (2019). Pharmmaker: Pharmacophore modeling and hit identification based on druggability 
simulations. Protein Sci. [Epub ahead of print]. (PDF) 

https://www.nature.com/articles/s41594-019-0253-7
https://www.sciencedirect.com/science/article/abs/pii/S0969212618303782
https://royalsocietypublishing.org/doi/full/10.1098/rstb.2017.0177
https://www.sciencedirect.com/science/article/pii/S0028390819302369
https://pubs.acs.org/doi/10.1021/jacs.8b09913
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00006
https://www.eneuro.org/content/5/6/ENEURO.0466-18.2018
https://linkinghub.elsevier.com/retrieve/pii/S2352-3964(19)30312-3
https://www.frontiersin.org/articles/10.3389/fphar.2019.00191/full
https://academic.oup.com/mbe/article/36/9/2053/5481007
https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.3732


20 

 

CORE B – HIGHLIGHTS 8/ 2018 – 8/ 2019 
 

During the 1st funding cycle, we published a total of 
45 papers that acknowledged P30 DA035778 

including those in Nature Struct Mol Biol1, Mol Biol 
Evol2, eLife3, Nucleic Acids Res4,5, Cell6, J. Amer 
Chem Soc7, and Bioinformatics8,9. Here we highlight 
a few in the period of August 2018 – August 2019. 
 

Elucidating the structural dynamics of monoamine 
transporters. Monoamine transporters (MATs) 
regulate neurotransmission via the reuptake of 
dopamine, serotonin and norepinephrine from extra-
neuronal regions, thus maintaining neurotransmitter 
homeostasis. They are targets of antidepressants, substances of abuse and drugs for neuropsychiatric and 
neurodegenerative disorders. We elucidate structural dynamics of MATs (Fig 1) and their conformational 
landscape and transitions, and allosteric regulation mechanisms1. Oligomerization is a common feature of 
MATs. Yet, its effects on the function of MATs is not fully understood. In collaboration with the Amara and 
Sorkin labs (FRPs), we examined the possible mechanisms of human dopamine transporter (hDAT) 
dimerization10 and trimerization11. Our study provides insights into mechanisms of addictive drug modulation.  
 

Application of quantitative systems pharmacology (QSP) methods to drugs of abuse. We carried out a 
comprehensive analysis of cellular pathways implicated in a diverse set of 50 drugs of abuse using QSP 
methods12. Apart from synaptic neurotransmission pathways detected as upstream signaling modules that 
“sense” the early effects of drugs of abuse, pathways involved in neuroplasticity are distinguished as 
determinants of neuronal morphological changes. We found that many signaling pathways converged to 
mTORC1, which emerges as a universal effector of the persistent restructuring of neurons in response to 
continued substance abuse. Our analysis identified pathways enriched at different stages of drug addiction, 
as well as those implicated in cell signaling and regulation associated with DA. 
 

Regulation of ferroptosic cell death. In collaboration with the Wenzel lab (FRP), we discovered a key 
mechanism underlying the execution of ferroptosis6,7. We showed that phosphatidylethanolamine-binding 
protein 1 (PEBP1) serves as a regulator of ferroptosis upon binding 15-Lipoxygenases.  PEBP1/15LO-driven 
ferroptosis occurs in asthma, kidney injury, and brain trauma modifying their activity and specificity to allow 
peroxidation of lipids. We demonstrated the importance of PEBP1-dependent regulation of ferroptotic death 
in cortical and hippocampal neurons in brain trauma. As master regulators of ferroptotic cell death with 
profound implications for human disease, PEBP1/15LO represents a new target for ND drug discovery.  
 

Major achievements in method, tool and technology development. Our ProDy API has reached a milestone 
of ~2 million downloads (as of August 2019; based on Google Analytics). Core B has made major 
biotechnological advances during the past funding period: (1) We designed a new module Pharmmaker13 for 
building pharmacophore model using outputs of druggability simulations (DruGUI). (2) QSP methods for 
predicting new drug-target associations, repurposable drugs and side effects have been implemented in 
BalestraWeb8. (3) We developed and implemented modules such as Evol9 for bridging methods based on 
sequence evolution and structural dynamics to infer functional mechanisms. (4) We designed a new interface, 
DynOmics5, for predicting and visualizing the environment-dependent dynamics of biomolecular systems. (5) 
We adapted the elastic network models (ENMs) originally introduced by our lab to new areas: predicting the 
effect of mutations (SAVs) on function14, determining the conserved/specific dynamics of protein families/ 
subfamilies2, and even chromosomal spatial dynamics4. These advances now open new opportunities to be 
realized by establishing and implementing new tools, RHAPSODY and SignDy. 
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Fig 1. Structural dynamics of dopamine transporter. Details 
see ref (Cheng and Bahar, Nat. Sturct. Mol Biol 2019) 
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Eric P. Xing is a Professor of Computer Science at Carnegie Mellon University. He is currently 
the Associate Department Head of the Machine Learning Department, founding director of 
the Center for Machine Learning and Health at Carnegie Mellon University, a Fellow of the 
Association of Advancement of Artificial Intelligence (AAAI Fellow), and an IEEE Fellow. He 
completed his undergraduate study at Tsinghua University, and holds a PhD in Molecular 
Biology and Biochemistry from the State University of New Jersey, and a PhD in Computer 
Science from the University of California, Berkeley. His main research interests are the 
development of machine learning and statistical methodology, and large-scale computational 
system and architectures, for solving problems involving automated learning, reasoning, and 
decision-making in high-dimensional, multimodal, and dynamic possible worlds in artificial, 
biological, and social systems. Prof. Xing currently holds or has held the following positions: 
associate editor of the Journal of the American Statistical Association (JASA), Annals of 
Applied Statistics (AOAS), IEEE Journal of Pattern Analysis and Machine Intelligence (PAMI) 
and the PLoS Journal of Computational Biology; action editor of the Machine Learning 
Journal (MLJ) and Journal of Machine Learning Research (JMLR); member of the United 
States Department of Defense Advanced Research Projects Agency (DARPA) Information 
Science and Technology (ISAT) advisory group. He is a recipient of the National Science 
Foundation (NSF) Career Award, the Alfred P. Sloan Research Fellowship in Computer 
Science, the United States Air Force Office of Scientific Research Young Investigator Award, 
the IBM Open Collaborative Research Faculty Award, as well as several best paper awards. 
Prof Xing is a board member of the International Machine Learning Society; he has served 
as the Program Chair (2014) and General Chair (2019) of the International Conference of 
Machine Learning (ICML). 
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CORE C – ABSTRACT 
 

Understanding Drug Abuse using Deep Machine Learning Approaches  

*Eric Xing, PhD and Wei Wu, PhD 

The goal of Core C (Computational Genomics Core for Drug Abuse, CG4DA) is to address fundamental 
methodological challenges of unraveling the genetic basis of DA by a systematic inference of the mapping between 
genetic variations and susceptibility to DA possibly induced by certain chemical compounds. Such a mapping 
provides a genome-wide atlas of potential targets and their risk under chemical compounds.  During the first funding 
cycle, we have developed advanced machine learning (ML) approaches and software systems for drug abuse 
research. More important, we have made significant progress in establishing collaborations on the selected 
NIDA/NIH-funded research projects (FRPs) in the first term using the approaches and tools we developed. The 
following summarize our main achievements in this past year: 

• To support the FRP PIs, Drs. Michael Vanyukov and Oscar Lopez, we developed machine learning models and 
methods, the Constrained Sparse Linear Mixed Model (CS-LMM) and the Coupled Mixed Model (CMM), to 
identify genetic variants jointly affecting substance use disorders and Alzheimer’s disease. Using CS-LMM, we 
identified multiple SNP variants associated with alcoholism and/or AD.1 Using CMM, together with Dr. Bahar 
and the Core B members, we identified five SNPs that are jointly associated with both SUDs and AD.2  

• To support FRP PI Dr. Sally Wenzel’s research, we developed a robust multiple kernel clustering method MML-
MKKC which allowed us to cluster asthma patients using a wide variety of variables. We applied this approach 
to the 346 asthma patients, and identified four differential response patterns among the patients3. We also 
identified the top 12 baseline predictive variables, and validated the clusters using an independent SARP test 
set. These findings give insight into clinical, biologic and physiologic determinants of CS response patterns that 
could be mechanistically utilized to better link molecular to clinical responses.  

• Following our previous work of detecting marginal epistasis signals, and motivated by the universal 
approximation power of deep learning, we developed a deep neural network method, namely Deep Mixed 
Model (DMM)4, that can potentially model arbitrary interactions between SNPs in genetic association 
studies as an extension to the mixed models in correcting confounding factors. With simulations, we 
demonstrate the superior performance over the existing methods.  

Selected Publications:  

1. Wang H. Vanyukov MM, Xing EP, Wu W. Discovering Weaker Genetic Associations Guided by Known Associations, 
BMC Medical Genetics 2019. Accepted. 

2. Wang H, et al. Coupled Mixed Model for joint genetic analysis of complex disorders from independently collected 
data sets: application to Alzheimer's disease and substance use disorder. Submitted to Bioinformatics. 
(https://www.biorxiv.org/content/10.1101/336727v2.article-metrics) 

3. Wu W, et al. Multiview Cluster Analysis Identifies Variable Corticosteroid Response Phenotypes in Severe Asthma. 
American Journal of Respiratory and Critical Care Medicine 2019 Jun 1;199(11):1358-1367. 

4. Wang H, Yue T, Yang Y, Wu W, Xing EP. Deep Mixed Model for Marginal Epistasis Detection and Population 
Stratification Correction in Genome-Wide Association Studies, BMC Bioinformatics 2019. Accepted.  

5. Wu X, et al. A computational strategy for finding novel targets and therapeutic compounds for opioid dependence. 
PLoS One 2018;13(11):e0207027. eCollection 2018. PMID:30403753. PMCID: PMC6221321. 

6. Bertholomey ML, et al. Phosphoproteomic analysis of the amygdala response to adolescent glucocorticoid exposure 
reveals G-protein coupled receptor kinase 2 as a target for reducing motivation for alcohol. Proteomes 2018. 6(4). 
pii: E41. PMID:30322021. PMCID: PMC6313880. 

7. Wang H, Lengerich BJ, Aragam B, Xing EP. Precision Lasso: accounting for correlations and linear dependencies 
in high-dimensional genomic data. Bioinformatics 2018. 35(7):1181-7. 

8. Wang H, Aragam B, Xing EP. Variable selection in heterogeneous datasets: A truncated-rank sparse linear mixed 
model with applications to genome-wide association studies. Methods. 2018 Aug 1;145:2-9. 

9. Wang H, Liu X, Xiao Y, Xu M, Xing EP. Multiplex confounding factor correction for genomic association mapping 
with squared sparse linear mixed model. Methods. 2018. 

10. Marchetti-Bowick M, Yu Y, Wu W, Xing EP*. A penalized regression model for the joint estimation of eQTL 
associations and gene network structure. The Annals of Applied Statistics. 2019;13(1):248-70. 

11. Wang H, et al. Graph-structured Sparse Mixed Models for Genetic Association with Confounding Factors Correction, 
BIBM 2019. 
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CORE C – HIGHLIGHTS  
 

During the first funding cycle, we have published 41 papers acknowledging P30 DA035778. Many of these papers 
were published in high-impact clinical journals (e.g., Am J Respir Crit Care Med1-3 and J Allergy Clin Immunol4), top 
machine learning and computational journals (e.g. Journal of Machine Learning Research,5, 6 the Annals of Applied 
Statistics7, Bioinformatics8), and the leading conferences for computational biology,9, 10 and machine learning.11-13 

Developing machine learning models and methods to identify genetic variants jointly affecting substance use 
disorders and Alzheimer’s disease. Many genetic variants have individually small effects, but collectively large 
effects, on complex human diseases. These variants are difficult to discover using conventional statistical methods. 
In order to discover such variants associated with either alcoholism or Alzheimer’s disease (AD) to support the PIs of 
the funded research project (FRP), Drs. Michael Vanyukov and Oscar Lopez, we developed a Constrained Sparse 
Linear Mixed Model (CS-LMM) (Aims 1 & 2). Using CS-LMM, we identified multiple potential weak but significant SNP 
variants associated with alcoholism and/or AD.14 Motivated by these results, we recently developed another method, 
Coupled Mixed Model (CMM), that allow us to identify genetic variants jointly associated with two different types of 
diseases. Using CMM, we identified five SNPs that are jointly associated with both SUDs and AD.15 One of the SNPs 
rs224534 resides in TRPV1, which, as predicted independently by Dr. Bahar and the Core B members, is related to 
drug abuse. The paper describing these results is under review in Bioinformatics. 

Developing machine learning methods for genome-wide association (GWA) mapping for marginal traits. We 
developed several methods for GWA mapping for marginal traits. Among them, a method named NETAM9 showed 
promise on the 3-way association mapping among genome, transcriptome, and phenome. This method was 
developed in the first funding cycle to help the FRP PI Lopez better understand the genetic basis of AD. NETAM 
leverages transcriptome as a bridge between genome and phenome to boost 
the power of association mapping. We applied NETAM to an AD genetic data 
set which contained SNP data from 270 AD patients and 270 controls, and 
matching gene expression microarray data from prefrontal cortex, visual cortex 
and cerebellum of a subset of the subjects (GEO GSE44772). We found 477 
associations from the AD data (Fig. 1), of which, 475 involve an SNP, an 
expression trait, and the phenotype (i.e., three-way associations). Only three of 
the 477 AD-associated SNPs were also identified by traditional analysis. To the 
best of our knowledge, AD-related 3-way associations have not been reported 
before. Notably, we found seven associations that involve VAMP1 encoding 
SNARE complex that controls neurotransmitter release via vesicle-mediated 
synaptic transmission; further, it is involved in nicotine pathway through SNARE 
complex. Interestingly, nicotine’s involvement in AD has been extensively 
studied, and nicotinic receptors have been suggested as drug targets for AD. 
These findings appeared in the top computational biology conference ISMB. 

Understanding complex response patterns of asthma patients to corticosteroids (CSs). CSs are the most 
effective asthma therapy, but responses are heterogeneous and systemic CSs lead to long-term side effects. In order 
to support FRP PI Dr. Sally Wenzel’s research, we developed a robust multiple kernel clustering method MML-MKKC 
which allowed us to cluster asthma patients using a wide variety of variables. We applied this approach to the 346 
participants in the Severe Asthma Research Program (SARP), and identified four differential response patterns among 
the patients1. We also identified the top 12 baseline predictive variables, and validated the clusters using an 
independent SARP test set. These findings give insight into clinical, biologic and physiologic determinants of CS 
response patterns that could be mechanistically utilized to better link molecular to clinical responses. Previously, we 
also helped Dr. Wenzel identify complex phenotypes among asthma patients.2-4 

1. Wu W, Bang S, … Wenzel SE (2019) AJRCCM 199: 1358. (PDF) 
2. Modena BD, … Wu W …Wenzel SE (2014) AJRCCM 190: 1363. (PDF) 
3. Modena BD, … Wu W …Wenzel SE (2017) AJRCCM 195: 1449. (PDF) 
4. Wu W, … Wenzel SE (2014) JACI, 133: 1280. (PDF) 
5. Al-Shedivat M, … Xing EP (2017) JMLR 18:1. (PDF) 
6. Kolar M, … Xing EP (2014) JMLR 15:1713. (PDF) 

7. Marchetti-Bowick M, … Xing EP (2019) Ann. Appl. Stat. 13:248. (PDF) 

8. Marchetti-Bowick M, … Xing EP (2016) Bioinformatics 32:2903. (PDF) 

9. Lee S, … Xing EP (2016) Bioinformatics (ISMB) 32:i164. (PDF) 
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Fig. 1. An example of 3-way association for AD 
identified by NETAM.  
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ADMINISTRATIVE CORE 
 

For Computational Drug Abuse Research (CDAR) Center 
 

Administrative Core Leaders: Sean Xie, Ivet Bahar and Eric Xing 
 

EXECUTIVE SUMMARY 
Xiang-Qun (Sean) Xie, MD, PhD, EMBA 

 
 

PERSONNEL 

Name Organization Role on Project 

Xie, Xiang-Qun, PhD University of Pittsburgh PI/Director, Core A PI, and AdminCore PI 

Bahar, Ivet, PhD University of Pittsburgh PI and Core B PI 

Xing, Eric, PhD 
 
Junmei Wang, PhD 
 
Zhiwei Feng, PhD 
 
Ying Xue, PhD 
 
Hongying Cheng, PhD 
 
Wei Wu, PhD 
 

Carnegie Mellon University 
 
University of Pittsburgh 
 
University of Pittsburgh 
 
University of Pittsburgh 
 
University of Pittsburgh 
 
Carnegie Mellon University 
 

PI and Core C PI 
 
Co-I & Coordinator for Core A 
 
Co-I for Core A 
 
Co-I for Core A 
 
Co-I & Coordinator for Core B 
 
Co-I & Coordinator for Core C,  
    Co-I for Core D (on behalf of Core C) 
 

Wang, Lirong, PhD 
 
Bing Liu, PhD 

University of Pittsburgh 
 
University of Pittsburgh 

Co-I for Core D (on behalf of Core A)  
 
Co-I for Core D (on behalf of Core B)  
 

Ayoob, Joseph, PhD 
 
Terence McGuire, PhD 

University of Pittsburgh  
 
University of Pittsburgh 

Enrichment Program Coordinator 
 
CDAR Center Scientific Administrator 

 

AIMS  
Aim 1. To provide leadership for the internal operations of the CDAR Center to ensure efficient 
integration and coordination of CDAR member activities and to maintain a balance between 
productivity, innovation, and service.  

Aim 2. To promote collaborative research and synergistic interactions between CDAR Core 
members and CDAR-affiliated members comprised of FRP and P/FP investigators and new 
potential collaborators.   

Aim 3. To initiate and support information exchange and data sharing with the broader DAR 
community and further scientific research interactions with NIDA-pertinent research at-large.  
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ACCOMPLISHMENTS 
 
Activities related to Aim 1. To provide leadership for the internal operations of the CDAR 
Center to ensure efficient integration and coordination of CDAR member activities and to 
maintain a balance between productivity, innovation, and service. 
 
The center has been fully functional and running smoothly for the third year. The CDAR Center 
is directed by Xiang-Qun (Sean) Xie, PhD, EMBA, who is in charge of overseeing all activities, 
including scientific, service, and training activities. The scientific leadership is shared among three 
PIs, Drs. Xie, Bahar and Xing, who serve as the PIs of the three Cores. The constituency of the 
Steering Committee, External Advisory Board, and Coordinator positions are summarized below.   
  

(1) CDAR Scientific Steering Committee (SSC): Senior Scientific Core members along with 
selected FRP PIs serve as the SSC board members to provide guidance and oversight to 
CDAR activities (see Table 1, below).  

Table 1. Scientific Steering Committee (SSC) 
SSC Member Primary Affiliation CDAR Role 

Xiang-Qun (Sean) Xie, 
PhD 

Dept of Pharmaceutical Sciences, SOP, Pitt 
PI, Director, Core A PI and 
AdminCore PI 

Ivet Bahar, PhD Dept of Computational & Systems Biol, SOM, Pitt PI, Core B PI 

Eric Xing, PhD Machine Learning Department, SCS, CMU PI, Core C PI 

Junmei Wang, PhD Dept of Pharmaceutical Sciences, SOP, Pitt 
Core A co-I and Core A 
Coordinator 

Zhiwei Feng, PhD Dept of Pharmaceutical Sciences, SOP, Pitt Core A co-I 

Ying Xue, PhD Dept of Pharmacy and Therapeutics, SOP, Pitt Core A co-I 

Mary Cheng, PhD Dept of Computational & Systems Biol, SOM, Pitt 
Core B co-I and Core B 
Coordinator 

Lirong Wang, PhD Department of Pharmaceutical Sci, SOP, Pitt 
Cores D co-I and Core D 
Coordinator   

Wei Wu, PhD Computational Biology Department, SCS, CMU 
Cores C-D co-I and Cores 
C-D Coordinator   

Bing Liu, PhD Dept of Computational & Systems Biol, SOM, Pitt 
Core B and D co-I and Core 
D Coordinator   

Joseph Ayoob, PhD Dept of Computational & Systems Biol, SOM, Pitt 
Enrichment & Outreach 
Program Coordinator 

Mary Toregrossa, PhD Department of Psychiatry, SOM, Pitt FRP11 PI (Theme 1)(a) 

Sally Wenzel, MD Environmental and Occupational Health, Pitt  FRP13 PI (Theme 2) 

Andreas Pfenning, PhD Computational Biology Department, SCS, CMU FRP14 PI (Theme 2) 

Alexander Sorkin, PhD Department of Cell Biology, SOM, Pitt FRP6 PI (Theme 3) 
(a)Themes: (1) cocaine & opioids; (2) DA-related inflammatory diseases and cognitive syndromes; (3) 
Neurotransmission.  

 
(2) Core Coordinators:  

• Junmei Wang, PhD for Core A  

• Mary Cheng, PhD for Core B  

• Wei Wu, PhD for Cores C and D (on behalf of Core C) 

• LiRong Wang, PhD for Core D (on behalf of Core A) 

• Bing Liu, PhD for Core D (on behalf of Core B) 
 

(3) Enrichment and Outreach Programs Coordinator:  
Joseph Ayoob, PhD is in charge of assisting the Core PIs in establishing productive ties with 
existing centers and institutes in the Pittsburgh area as well as those from outside institutions. 
 

(4) External Advisory Board (EAB):  
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The EAB has consisted of 9 members (7 retained after 1st funding cycle, see below). They 
are nationally renowned, with experience incheminformatics, computational biology or 
computational genomics, and research focus on DA, neurobiology and/or pharmacology. 

•  Eric Billings, PhD 
Director, Staff Scientist, Bioinformatics and Systems Biology Core Facility 
NIH, NHLBI 

•  Barry Gold, PhD 
Professor Emeritus, Department of Pharmaceutical Sciences 
University of Pittsburgh 

•  Tarek A. Leil, PhD 
Group Director – Quantitative Clinical Pharmacology 
Clinical Pharmacology & Pharmacometrics 
Bristol-Myers Squibb 

•  Ying Mu, PhD, DABT 
CEO, EagleImmune, Inc. 

• Christopher L. Waller, PhD 
Vice President-Business Consulting and Chief Scientist 
EPAM Systems, Inc. 

•  Zheng-Xiong Xi, PhD 
Scientist, Intramural Research Program 
NIH, NIDA 

•  Nurulain Zaveri, PhD 
Founder, President and Chief Scientific Officer 
Astraea Therapeutics 
 

Core technologies and programs have been expanded and/or updated.  
In the fifth year, we continued to make significant advances in developing cutting-edge tools and 
platforms that can be readily utilized for DA research by both our collaborators and the external 
research community. The key technologies are illustrated below:  
 
Core A:  

1. Pharmacometrics & Systems Pharmacology for drug abuse research (XQ Xie, JM Wang, 
LR Wang, ZW Feng, R Bertz) 

a) We have constructed robust models for predicting substance use disorder and substance 
use severity (a newly established substance use/drug abuse outcome).   

b) We made progress to elucidate the drug-drug interaction mechanisms for oxycodone co-
administrated with diazepam.  

c) We made progress to study the PK profile of heroine by using population PK modeling.  
2. Computer-Aided Drug Design for drug abuse research (XQ Xie, JM Wang, LR Wang, ZW 

Feng) 
a) We have developed a novel approach, ELIE, to accurate calculate binding affinity. 
b) We have evaluated 17 protein force fields on studying the aggregation mechanisms for 

Amyloid-beta  
c) We have developed a novel computational protocol for designing inhibitors of Amyloid-

beta aggregation. We have also studied the Amyloid-beta aggregation mechanism 
through massive molecular dynamics simulations 

d) We have studied a set of protein systems, including MscL, NK1R, TLR2, EGFR, etc., 
through collaborations. 

3. Novel Platforms or Tools for Virtual Animal and Drug Abuse (XQ Xie, ZW Feng et al) 
a) We have finished the platform of virtual animal (MS is in prepar), which provide the 

experimental data/analyses of drugs for CVD. In addition, the platform can provide the 
prediction for the query compound(s) 

b) We have finished the platform of Drug Abuse Knowledgebase-GPCRs (MS in revision) 
that integrated with artificial intelligence algorithms 
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4. Molecular mechanics force field development for drug abuse and neurological research. 

(JM Wang) 
a) We have developed a set of atomic polarizability models for the new generation of 

AMBER polarizable force fields.  
b) We are about to finish the development of GAFF2.1, a milestone of GAFF force field 

development. 
c) We made substantial progress on redevelopment of a fast charge method (AM1-BCC) 

for rational drug design. 

 
Core B:  

1. We designed a new module Pharmmaker (http://prody.csb.pitt.edu/pharmmaker/) (Protein Sci. 
in press) for building pharmacophore model using outputs of druggability simulations (DruGUI). 
The pharmacophore models can be used for virtual screening of libraries of small molecules. A 
strong aspect of the method is that Pharmmaker uses multiple target conformations dependent 
on the binding poses of probes where they interact during druggability simulations, meaning that 
the binding score in virtual screening can be evaluated in a more realistic manner. Also, we can 
have multiple pharmacophore models with different target conformations and probe poses, which 
can be analyzed statistically. 

2. We Implemented a new module SignDy (Mol Biol Evol, in press) to ProDy API. SignDy 
calculates the signature dynamics of families of proteins that share similar folds, but not 
necessarily similar sequences. Signature dynamics includes shared mode profiles, shared 
covariance between residue fluctuations, and their variations across family members. Additional 
information can be found in online tutorials;(http://prody.csb.pitt.edu/signdy/). 

3. We developed an easy and efficient web server QuartataWeb (http://quartata.csb.pitt.edu) for 
mining known (experimentally verified) and predicted interactions for 5,494 drugs in DrugBank 
and 315,514 chemicals in STITCH, along with the confidence levels of the predicted chemical-
target interactions (CTIs) using a machine learning based model. 

4. We initiated the implementation of Rhapsody (http://rhapsody.csb.pitt.edu/)  (PNAS, 115: 4164-
4169; 2018) for upgraded pathogenicity prediction of missense variants by taking structural 
dynamics into considerations. 

5. significantly advanced the capabilities of ProDy, which currently offers 10+ modules with user-
friendly visualization tools, more than 40,000 code-line, and more than 4,000 pages of 
documentation including manuals and tutorial. ProDy reached an impressive milestone of 2 
million downloads (http://prody.csb.pitt.edu/statistics/) as of September 2019. 

6. Our database of GNM results, iGNM DB (Nucleic Acids Res 44: D415-422; 2016) now covers 
95% of structures available in the PDB (a 5-fold increase compared to earlier version); and its 
improved techniques, libraries and markup language (Ajax, JQuery, HTM5, PHP and Highcharts) 
enhanced its security and interoperability.  

7. Our webserver DynOmics (dynomics.pitt.edu) (Nucleic Acids Res, 45: W374-380; 2017) is a 
portal developed to leverage rapidly growing structural proteomics data by efficiently and 
accurately evaluating the dynamics of structurally resolved systems, from individual molecules to 
large complexes and assemblies, in the context of their physiological environment.  

8. Updated web server Balestra (http://balestra.csb.pitt.edu/) (Bioinformatics 31:131-3; 2015) using 
the DrugBank version 5. Database architecture (PostgreSQL) has been used for the BalestraWeb 
server to improve the query performance. The searching engine has been improved to accept 
multiple proteins/drugs. We have integrated the protein information from the Uniprot 
database. We have improved the GUI/interface of the input and the output with the integrated 
information of proteins and drugs. The server has been extended to the Stitch database version 
4 using the PostgreSQL database. We are developing the new version of BalestraWeb, which 
can efficiently identify chemicals, targets and pathways for drug abuse and will play an important 
role in discovering the underlying mechanisms and developing corresponding therapeutic 
strategies. 

9. Implemented DruGUI (http://prody.csb.pitt.edu/drugui/) as a VMD plugin designed for setup and 
analysis of simulations containing small organic molecules (probes) for druggability 
assessment. DruGUI can incorporate a diverse set of molecules from CHARMM General Force 
Field (CGenFF) into simulations. DruGUI is used to i) identify druggable and ligandable sites; ii) 
setup a simulations that contain diverse probe molecules; iii) calculate probe molecule occupancy 

http://prody.csb.pitt.edu/pharmmaker/
http://prody.csb.pitt.edu/signdy/
http://rhapsody.csb.pitt.edu/
http://prody.csb.pitt.edu/statistics/
http://balestra.csb.pitt.edu/
http://prody.csb.pitt.edu/drugui/
http://www.ks.uiuc.edu/Research/vmd/
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grids; iv) analyze druggability of target protein; and v) perform druggability analysis of specific 
sites. 

10. We developed  SMOKE (https://liubing1020.github.io/smoke/) (Autom Reas Syst Biol Med, 63-
92; 2019), a Statistical MOdel checKing tool for Estimating unknown parameters of dynamical 
models. It can utilize both quantitative data and qualitative knowledge for calibrating large models 
with hundreds of unknown parameters. It was originally developed for analyzing ordinary 
differential equation (ODE) models of biological networks, and currently being generalized to 
other modeling formalisms including stochastic models, rule-based models, and hybrid models. 

 
 
Core C:  We have developed several new machine learning tools for DA research.  

1. Many genetic variants have individually small effects, but collectively large effects, on 
complex human diseases. These variants are difficult to discover using conventional 
statistical methods. In order to discover such variants associated with alcoholism and 
Alzheimer’s disease, we developed a novel machine learning method called Constrained 
Sparse Linear Mixed Model (CS-LMM) (Aims 1-3). Using CS-LMM, we identified multiple 
potential weak but significant SNP variants associated with both alcoholism and/or 
Alzheimer’s disease (AD).  

 
2. Motivated by the results we observed from the CS-LMM project that some genes are 

associated with both alcoholism and AD, we extended the study to develop a new machine 
learning method, Coupled Mixed Model (CMM), that can identify genes that are jointly 
associated with two different types of diseases (Aims 1-3). In particular, we are interested in 
identifying the genes that are jointly associated with substance abuse disorder and AD by 
analyzing two independently collected data sets from raw sequence data.  

 
3. Despite the proliferation of GWAS tools, detecting epistasis is still challenging. One main 

limitation of the existing tools is that they can only model linear association signals in the 
GWAS data. To overcome this challenge, we leverage the power of the deep neural networks 
and developed a tool, namely Deep Mixed Model (DMM), to model arbitrary interactions of 
the data.  

 
4. Cluster analysis has been employed to detect subtypes of complex diseases which is a key 

task for precision medicine. However, clustering patients based on different sources/types of 
data (or called multiview data, e.g., clinical, gene expression, and proteomic data) can be 
challenging because different data has its own statistical property that is different from other 
data. Existing approaches that aim to address this problem can yield unfavorable results that 
largely depend on certain types of data when noise or redundant variables present in the 
multiview data. We developed a robust multiple kernel k-means clustering approach, called 
MML-MKKC, and showed that our method can robustly identify true clusters when noise or 
redundant variables are present in multiview data. 

 
5. Better understanding how corticosteroids (CSs) use affects asthma patients is important for 

precision treatment of these patients. For this purpose, we analyzed a rigorously 
characterized adult asthma cohort from the Severe Asthma Research Program (SARP), and 
developed a multiview strategy which allows us to identify clusters of the asthma subjects 
with differential response patterns to CS using MML-MKKC. Using this strategy, we identified 
four clusters of patients showing differential response patterns among the asthma patients; 
our clusters were validated using an independent SARP test set. 

 
Details are given in the reports from each individual core. 

https://liubing1020.github.io/smoke/
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Activities related to Aim 2. To promote collaborative research and synergistic interactions 
between CDAR Core members and CDAR-affiliated members comprised of FRP and P/FP 
investigators and new potential collaborators. 

A major goal of the NIH P30 PAR-18-225 is to provide research support to FRPs and P/FPs. Here, 
we present an overview of the 15 FRPs and 5 P/FPs selected for support in the second funding cycle 
(Table 2, top and Table 3, respectively). More details on Cores A-C activities to 
serve/accelerate/impact the ongoing FRPs and P/FPs are given in the reports from each individual 
Core. In addition, we selected four funded training programs (FTPs) led by Drs. Kass (CMU), Xu 
(Pitt), Rosano (Pitt) and Faeder/Bahar/Schwartz/Bar-Joseph (CMU/Pitt), to help train future DAR 
researchers (see Table 2, bottom).  
 

Table 2. NIDA-Funded Research Projects (FRP) that are supported by CDAR 

# 

PI 
(Institution

) 

Funding 
Source 

Title Status 
Plan for 
year 6 

Research 
Support  

Core 

1 
Venkat 
(Pitt) 

5U54HD047905-
15 

BASIC/TRANSLATIONAL 
INVESTIGATIONS ON 

BUPRENORPHINE 
On-going Continue A,C 

2 
Xi  

(NIDA) 
1ZIADA12345 

NOVEL CB2 FUNCTIONAL 
LIGANDS FOR COCAINE 

ATTENUATION 
New FRP Continue A 

3 
Lopez  
(Pitt) 

1RF1AG052525-
01 

SUBCLINICAL VASCULAR 
DISEASE AND 

ALZHEIMER’S DISEASE 
PATHOLOGY IN THE 
TRANSITION FROM 

MIDLIFE TO OLD AGE 

On-going 

(1 paper 
published and 1 
under revision) 

Continue A,C 

4 
Zhang  
(Pitt) 

5R35GM128641-
02 

STRUCTURE, 
PHARMACOLOGY AND 

SIGNALING OF G 
PROTEIN-COUPLED 

RECEPTORS (GPCRS) IN 
INFLAMMATION 

New FRP 
(Formerly P/FP) 

(1 paper under 
review) 

Continue A, B 

5 
Tang  
(Pitt) 

1R01DA046939-
01 

ALPHA7 NICOTINIC 
RECEPTOR: 

STRUCTURES AND 
COUPLING WITH 
INTRACELLULAR 

PROTEINS 

New FRP Continue A, B 

6 
Sorkin  
(Pitt) 

2R01DA014204-
15 

REGULATION OF 
DOPAMINE 

TRANSPORTER (DAT) BY 
TRAFFICKING 

On-going 

(4 papers 
published) 

Continue B 

7 
Newman 
(NIDA) 

1ZIADA000389-
22 

NOVEL AND ATYPICAL 
DOPAMINE UPTAKE 

INHIBITORS 

On-going 

(1 paper 
published) 

Continue B, A 

8 
Amara 
(NIMH) 

1-ZIA MH002946 

STRUCTURE, FUNCTION 
AND PHARMACOLOGY 

OF 
NEUROTRANSMITTER 
REUPTAKE SYSTEMS 

On-going 
(Formerly P/FP) 

(1 paper 
published) 

Continue B 

9 
Chu  
(Pitt) 

1R01NS101628-
01 

DENDRITE REGULATION 
BY THE MITOCHONDRIAL 

KINASE PINK1: 
IMPLICATIONS FOR 

New FRP Continue B 
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PARKINSON’S 
DISEASE/LBD 

10 
Khoshbouei 

(U F) 
5R01DA026947 

METHAMPHETAMINE 
REGULATES THE 

DOPAMINE 
TRANSPORTER VIA AN 

INTRACELLULAR 
MECHANISM 

New FRP Continue B 

11 
Torregross

a (Pitt) 
5R01DA042029-

02 

MECHANISMS 
REGULATING COCAINE 
MEMORY STRENGTH 

On-going 
(Formerly P/FP) 

(1 paper 
published) 

Continue C, B 

12 
Dong  
(Pitt) 

2R37DA023206-
12 

COCAINE-INDUCED 
ADAPTATION IN NMDA 

RECEPTORS 
On-going Continue C, A 

13* 
Wenzel 

(Pitt) 

5P01AI106684-
04 

 

IMPACT OF INNATE AND 
ADAPTIVE IMMUNITY AT 
THE AIRWAY EPTHELIUM 

IN SEVERE ASTHMA 

On-going 

(5 papers 
published) 

Continue C, B 

14 
Pfenning 
(CMU) 

1DP1DA046585-
01 

INTERPRETING THE 
REGULATORY 
MECHANISMS 

UNDERLYING THE 
PREDISPOSITION TO 

SUBSTANCE USE 
DISORDERS 

On-going 
(Formerly P/FP) 

Continue C, B 

15 

Alison 
Barth 
(CMU) 

5R01NS088958-
04 

DYNAMIC CONNECTIVITY 
IN NEOCORTICAL 

NETWORKS 
New FRP Continue C, B 

NIH Funded Training Programs (FTPs) for CDAR Enrichment & Outreach Program Activities 

1 
Kass 

(CMU) 
5T90DA022762-

12 

INTERDISCIPLINARY 
TRAINING IN 

COMPUTATIONAL 
NEUROSCIENCE 

On-going Continue A, B, C 

2 
Xu  

(Pitt) 
5T32GM075770-

12 

RESEARCH TRAINING IN 
ANESTHESIOLOGY AND 

PAIN MEDICINE 
New initiated Continue A, B, C 

3 
Rosano 

(Pitt) 
1T32AG055381-

01 

POPULATION 
NEUROSCIENCE OF 

AGING AND ALZHEIMER’S 
DISEASE 

New initiated Continue A, C 

4 

Faeder, 
Bahar (Pitt) 
Bar-Joseph 

(CMU) 

2T32EB009403-
11 

INTEGRATED, 
INTERDISCIPLINARY, 

INTERUNIVERSITY PHD 
PROGRAM IN 

COMPUTATIONAL 
BIOLOGY 

New initiated Continue A-C 

* Although this project is NHLBI-funded, asthma research lies within the scope of NIDA-funded research.  

 
 
 
 
 

https://projectreporter.nih.gov/project_info_description.cfm?aid=9683880&icde=46026033&ddparam=&ddvalue=&ddsub=&cr=1&csb=default&cs=ASC&pball=
https://projectreporter.nih.gov/project_info_description.cfm?aid=9683880&icde=46026033&ddparam=&ddvalue=&ddsub=&cr=1&csb=default&cs=ASC&pball=
https://projectreporter.nih.gov/project_info_description.cfm?aid=9683880&icde=46026033&ddparam=&ddvalue=&ddsub=&cr=1&csb=default&cs=ASC&pball=
https://projectreporter.nih.gov/project_info_description.cfm?aid=9683880&icde=46026033&ddparam=&ddvalue=&ddsub=&cr=1&csb=default&cs=ASC&pball=
https://projectreporter.nih.gov/project_info_description.cfm?aid=9683880&icde=46026033&ddparam=&ddvalue=&ddsub=&cr=1&csb=default&cs=ASC&pball=
https://projectreporter.nih.gov/project_info_description.cfm?aid=9683880&icde=46026033&ddparam=&ddvalue=&ddsub=&cr=1&csb=default&cs=ASC&pball=
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(a) the Core that will lead the collaboration is written in boldface in the last column; as in Table 2.  

 

 

Activities related to Aim 3. Further the CDAR’s scientific interactions with NIDA-pertinent 
research at large, and to facilitate information exchange and data sharing with the broader 
community.  

This aim is achieved with the help of various enrichment and dissemination programs in the areas 
pertinent to DAR. Important activities as a national resource to benefit the broader community include:  

• Outreach to the DAR community, contributions to existing NIDA-funded research and educational 
programs;  

• Organization of workshops, courses, and online resources to enable efficient use of computational 
methods;   

• Effective dissemination of software tools including begiining interactive tutorials, research 
progress and data, and maintenance CDAR web services and cloud computing server. 

Since CDAR’s inception in 2014, the AdminCore has played a critical role in establishing CDAR 
activities in local, regional, and national DAR communities. Under the leadership of the CDAR 
Director, and with the assistance of the Core Coordinators, the Enrichment and Outreach (E/O) 
Program leader (Dr. Joseph Ayoob), and the Scientific Administrator (Dr. Terence McGuire), the 
AdminCore has facilitated the dissemination and usage of state-of-the-art in silico tools and resources 
developed and maintained by Cores A-C. The AdminCore has also enabled the smooth operation 
and coordination of the complementary activities of the Cores as well as the productive collaborations 
with FRP and P/FP investigators and established DA researchers in academia and government 
agencies (NIH and FDA). CDAR achievements facilitated by the AdminCore in the first funding 
cycle include:  

• Publications: 143  

• Conference Presentations: 77 (see individual Cores for details) 

• Invited Talks by CDAR PIs: 67 (see individual Cores for details) 

• Center Seminars: 65 (2018 – 2019 Seminars listed below; complete list at 
(http://www.cdarcenter.org/outreach/presentations/) 

• Hands-on Training Workshops: 7 Courses with 49 presentations (2018 – 2019)  

• CDAR-Hosted National Scientific Symposium: 1 

Table 3. Pilot/Feasible Projects (P/FP) proposed for CDAR support in the 2nd funding cycle (a) 

P/FP PI Institution Title Core 

1 Ying Xue Pitt 
School of Pharmacy 

SUD risk stratification by using ML algorithms and 
Bayesian network models 

A, C 

2 Blair 
Journigan 

Marshall University Novel ligands for TRPM8 menthol receptor for smoking 
cessation 

A, B 

3 Zachary 
Freyberg 

Pitt 
Psychiatry &  
Cell biology 

Cryo-EM approaches for drug abuse research B, C 

4 Min Xu CMU 
Comp Biol 

Deep learning approaches for analyzing Cryo-EM 
imaging data for drug abuse research 

C, B 

5 Scott Malec Pitt-Biomedical 
Informatics 

Literature-based discovery informing graphical causal 
modeling for repurposing drugs 

A 

http://www.cdarcenter.org/outreach/presentations/
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• 2 Patents and 1 Joint Disclosure (filed)  

• CDAR-Supported Grant Submissions: 27 
o 18 Awarded:  

❖ 5 to Junior Faculty 
❖ 6 NIH R01s 
❖ 2 Fellowships 

Details are provided below and/or in the individual Core reports. See also CDAR website 

(http://www.cdarcenter.org). 

 

Mentoring and Training Researchers in the Field 

The training and course programs include courses and/or one-on-one work with a mentor, workshops, 
conferences, seminars, study groups, and individual study. The number of participants from the fist 
funding cycle is also listed, below (details are described in the report from each individual core). 

a) PhD programs: PIs and co-investigators have been actively participating in the following 8 
PhD programs: 

a. PhD Program in Genomics, Proteomics and Drug Discovery (GPDD)  
b. CMU/Pitt PhD Program in Computational Biology (CPCB) 
c. PhD Program in Biomedical Informatics 
d. Molecular Biophysics and Structural Biology (MBSB) 
e. PhD Program in Medicinal Chemistry  
f. PhD Program in Pharmacometrics and Systems Pharmacology (PSP) 
g. PhD program in Machine Learning (CMU) 
h. PhD program in Computer Science (CMU) 

 
b) Teaching courses: The Core PIs and investigators have participated in the following 12 

teaching courses: 
a. Pharmacometrics & System Pharmacology 
b. Drug Discovery, Design & Development Journal Club  
c. Advanced Medicinal Chemistry  
d. Foundations in Pharmaceutical Sciences  
e. Pharmaceutical Analysis  
f. Computational Systems Pharmacology (new course developed)  
g. Graduate Machine Learning 
h. Probabilistic Graphical Models 
i. Computational Medicine 
j. Genomics and Epigenetics of the Brain 
k. Advanced Statistics 
l. Advanced Pharmacokinetics 
m. Computational Chemical Genomics for Drug Design 

 
c) Grad Students, Postdocs and Visiting Scholars Supervised: 60 (first funding cycle) 

(See the report from each individual Core) 
Core A – 32 
Core B – 23 
Core C – 5 

 
d) Undergraduate Students Mentored: 15 

(See the report from each individual Core) 
Core A – 9 
Core B – 5   
Core C – 1  

http://www.cdarcenter.org/
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e) Training Courses – 7 Courses with 49 presentations (2018 – 2019) 

In the last funding cycle, CDAR Center faculty have participated in numerous training 
courses/workshops (http://www.cdarcenter.org/outreach/fellows-training-workshop/). In the 
2018 – 2019 period, the following courses and presentations were made by CDAR 
members: 

 
August 6 – 29, 2019 

10 presentations (4 classes) demonstrating the utilization of NONMEM for Systems 
Pharmacology - CDAR Workshop Series (Core A) 

May 13-17, 2019 
Hands-on Workshop on Computational Biophysics  Pittsburgh Supercomputing Center.  
Pittsburgh, PA.  
3 Presentations by Drs. Ivet Bahar, James Krieger, and Jiyoung Lee; Core B)  

October 8, 2018 – April 11, 2019  
32 presentations (12 classes) demonstrating the utilization of MATLAB and SimCYP for 
Systems Pharmacology - CDAR Workshop Series (Core A) 

 
October 15-17, 2018 

CECAM (Centre European pour le Calcul Atomique et Moléculaire) Workshop,  "Multiscale 
simulations of allosteric regulatory mechanisms in cancer-associated proteins and signaling 

protein networks," Lugano, Switzerland. (presentation by Dr. Ivet Bahar). 
 
October 6-8, 2018 

Computational Biology Workshop, Arizona State University.  Phoenix, Arizona (presentation 
by Dr. Ivet Bahar). 

 
September 12-14, 2018 

CECAM (Centre European pour le Calcul Atomique et Moléculaire) Workshop, "Normal 
modes of biological macromolecules: methods and applications," Paris, France 

(presentation by Dr. Ivet Bahar). 
 

2018 
National Research Mentoring Network (NRMN).  Dr. Joseph Ayoob was one of four 
NRMN’s Master Mentors, who was certified as a Train-the-Trainer Facilitator. 

 
2016 Joint Core Hands-On Training Workshop (part of P30 CDAR National Meeting) 
All three P30 Cores held a Joint Workshop for any interested attendees of our 2016 National 
Scientific Symposium meeting (August 9, 2016).  Each Core presented 90 min talks 
highlighting the usefulness and proper application of their computational tools and gave 
practical demonstrations. An outline of the workshop is given below:   
 
Core A Training (30 minute lecture and 1 hour demo & practice) 
Training topics: 
(1) Chemogenomics Database for Drug Abuse & Neuro-disorders: Genes, protein targets, 
pathways involved in a disease and small molecules that can directly interact with these key proteins 
with the potential to modulate the disease.  
(2) TargetHunerMap: To predict the potential protein target(s) of a small molecule drug or a chemical 
compound through structure similarity or molecular docking. 
(3) BBB prediction: To predict the blood-brain barrier (BBB) permeability of a small molecule based 
on its chemical features. 

 
Core B Training (30 minute lecture and 1 hour demo & practice) 
Training topics: 
(1) ANM (Anisotropic network model): an elastic network based tool for analysis of dynamics of 
proteins and nucleic acids.  

http://www.cdarcenter.org/outreach/fellows-training-workshop/
https://mmbios.pitt.edu/hands-on-workshop-on-computational-biophysics-2019
https://www.cecam.org/workshop-1576.html
https://www.cecam.org/workshop-1576.html
https://www.cecam.org/workshop-1576.html
https://www.cecam.org/workshop-1554.html
https://www.cecam.org/workshop-1554.html
http://nrmnet.net/
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(2) ProDy: a free and open-source Python package for protein structural dynamics and sequence 
analysis. 
(3) Druggability simulations: the use of DRUGUI, a VMD plugin, for performing MD simulations for 
druggability assessment, using probe molecules. 

 
Core C Training (30 minute lecture and 1 hour demo & practice) 
Training topic: 
GenAMap: GenAMap software is a powerful platform for detection and easy visualization of structured 
association of genomic data and physical traits. 

Outreach to students in existing training programs: 

In the first funding cycle, students enrolled in other training programs were offered the opportunity 
to receive training with utilization of CDAR Center’s tools as they may have application to their 
research projects (DA and DA-associated research). These training programs include: 

o Interdisciplinary Training in Computational Neurosciences (R90DA023426, Dr. Kass, CMU) 
o Research Training in Anesthesiology and Pain Medicine (5T32GM075770, Dr. Xu, Pitt) 
o Program in the Neurobiology of Substance Use and Abuse (T32DA031111, Dr. Bradberry, 

Pitt) 
o Population Neuroscience of Aging and Alzheimer’s Disease (1T32AG055381, Dr. Rosano) 
o Integrated, Interdisciplinary, Interuniversity PhD Program in Computational Biology 

(2T32EB009403, Drs. Faeder and Bahar (Pitt) and Dr. Bar Joseph (CMU)) 
o Joint Computational/Experimental Biomed Summer res Program for Undergraduate 

(R25DA032519, Dr. Madura, Duquesne) 
o PhD Program in Genomics, Proteomics and Drug Discovery (GPDD, Pitt) 
o CMU/Pitt PhD Program in Computational Biology (CPCB, Pitt/CMU) 
o PhD Program in Biomedical Informatics (Pitt) 
o Training and Experimentation in Computational Biology (TECBio) REU @ Pitt 
o Molecular Biophysics and Structural Biology (MBSB, Pitt/CMU) 

 
 
Publications 
In the first funding cycle, the CDAR Center has developed to be a leader in technology innovation, 
successfully catalyzing synergistic collaborations between current and emerging researchers in the drug 
abuse (DA) research (DAR) area. The high productivity of the Center during the past term is evidenced by 
143 publications, several of which were published in high profile journals, such as Nature Communications 
(IF = 11.9), PNAS (IF = 9.6), Cell (IF = 36.2), Nature Structural & Molecular Biology (IF = 12.7), Journal 
of Allergy and Clinical Immunology (IF = 12.5), Current Opinion in Structural Biology (IF = 7.2), eLife (IF 
=7.6 ), Autophagy (IF = 11.1), Nucleic Acids (IF = 11.1), Alzheimer’s & Dementia (IF = 14.4), American 
Journal of Respiratory and Critical Care Medicine (IF = 16.5), Journal of Medicinal Chemistry (IF = 6.3), 
and Molecular Biology and Evolution (IF = 14.8). The significance of the findings of CDAR Center’s 
publications is reflected by the high number of times they have been cited by others in the field (>2000 
Google Scholar citations as of September, 2019).  

(The complete list of 143 P30 CDAR publications is provided in the PRODUCTS section at the end of 
the AdimnCore report, below.) 

 

Invited Talks 
In the first funding cycle, CDAR PIs presented 67 talks at national and international conferences. In the 
2018 – 2019 period, CDAR Center PIs and senior members gave 24 invited talks. 

(See individual Core reports for details.) 

 

National Scientific Research Symposium hosted by CDAR Center – Aug. 8-9, 2016 
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In the first funding cycle, CDAR Center hosted a 2-day Scientific Research Innovation Research 
Conference which was held concurrently with our Second Annual P30 CDAR EAB Meeting and a joint 
Poster Session. The purpose of the symposium was to further the CDAR’s scientific interactions with 
NIDA-pertinent research at large, and to facilitate information exchange and data sharing with the 
broader community. All Cores shared in the organization and presentation of research.  Statistics 
gathered from the meeting are given below. 

Summary of CDAR National Meeting Stats: 
Meeting Stats 

• Total attendees: 104 

• Major Talks: 10 Total  

❖ 7 Invited Speakers:  

o 4 Academic (Northeastern U., CMU, Icahn Medical Institute, UPMC) 

o 2 Industry (Merck, Bristol-Myers Squibb) 

o 1 Government (NIH NIDA) 

❖ 3 Core PIs (Drs. Xiang-Qun Xie, Ivet Bahar, and Eric Xing) 

• Sponsors: NIH NIDA, School of Pharmacy UPitt, Bristol-Myers Squibb, Dell, Walgreens, 

dotmatics 

• Total Students/Postdoc: 20/15 (estimated)   

• No. of posters: 21 

• 3 Awardees: Cihan Kaya (School of Medicine, UPitt), Ziheng Hu (School of Pharmacy, UPitt), and 

Siwei Xie (Computational Biology, CMU)  

• Government Agencies with Meeting Attendees: FDA, NIH, NIDA, Pennsylvania Allegheny 

County Medical Examiner 

• Companies with Meeting Attendees:  Merck, Bristol-Myers Squibb, Astraea Therapeutics 

• Universities/Research Institutes with Meeting Attendees: Northeastern University, Icahn 

Medical Institute, Albany College of Pharmacy and Health Sciences, UPMC, UPitt, CMU, 

Duquesne University, Fudan University (China), Tsinghua University (China), China 

Pharmaceutical University (China) 

General Consensus of EAB Members: CDAR is in an excellent position to draw upon the strengths and 
research activities of three Principal Investigators (Drs. Xie, Bahar, and Xing), which possess 
complementary expertise and overlapping research objectives.  The Center is well-positioned, with the 
combined objectives of the PIs, to enhance and implement their cutting-edge tools for identification and 
evaluation of targets; design and modeling of target ligands; and repurposing of existing drugs. 

Training and Workshops Associated with National Symposium: 

Our CDAR Center also held a Joint Workshop for any interested attendees of the meeting (August 9, 
2016).  Each Core gave 90 min talks highlighting the usefulness and proper application of their 
computational tools and gave practical demonstrations. An outline of the workshop is given below:  

Core A Training (30 minute lecture and 1 hour demo & practice) 
Training topics: 

(1) Chemogenomics Database for Drug Abuse & Neuro-disorders: Genes, protein targets, 
pathways involved in a disease and small molecules that can directly interact with these key 
proteins with the potential to modulate the disease.  
(2) TargetHunerMap: To predict the potential protein target(s) of a small molecule drug or a 
chemical compound through structure similarity or molecular docking. 
(3) BBB prediction: To predict the blood-brain barrier (BBB) permeability of a small molecule 
based on its chemical features. 

Core B Training (30 minute lecture and 1 hour demo & practice) 
Training topics: 

(1) ANM (Anisotropic network model): an elastic network based tool for analysis of dynamics of 
proteins and nucleic acids.  
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(2) ProDy: a free and open-source Python package for protein structural dynamics and sequence 
analysis. 
(3) Druggability simulations: the use of DRUGUI, a VMD plugin, for performing MD simulations 
for druggability assessment, using probe molecules. 

Core C Training (30 minute lecture and 1 hour demo & practice) 
Training topic: 

GenAMap: GenAMap software is a powerful platform for detection and easy visualization of 
structured association of genomic data and physical traits. 

 

NOTE: Other training courses and hands-on workshops are discussed below. 

 

OPPORTUNITIES FOR TRAINING AND PROFESSIONAL DEVELOPMENT 
PROVIDED  

 

a) PhD programs: PIs and co-investigators have been actively participating in the following PhD 
programs: 

a. PhD Program in Genomics, Proteomics and Drug Discovery (GPDD)  
b. CMU/Pitt PhD Program in Computational Biology (CPCB) 
c. PhD Program in Biomedical Informatics 
d. Molecular Biophysics and Structural Biology (MBSB) 
e. PhD Program in Medicinal Chemistry  
f. PhD Program in Pharmacometrics and Systems Pharmacology (PSP) 
g. PhD program in Machine Learning (CMU) 
h. PhD program in Computer Science (CMU) 

 
b) Teaching Courses: The Core PIs and investigators have participated in the following 9 teaching 
courses: 

a. Drug Discovery, Design & Development Journal Club  
b. Advanced Medicinal Chemistry  
c. Foundations in Pharmaceutical Sciences  
d. Pharmaceutical Analysis  
e. Computational Systems Pharmacology (new course developed)  
f. Graduate Machine Learning 
g. Probabilistic Graphical Models 
h. Computational Medicine 
i. Genomics and Epigenetics of the Brain 

 
c) Training Workshops: (described above) 
 
d) Center Seminars. In the first funding cycle, CDAR Center has had a total of 65 seminars.  Of 
these, in the 2018-2019 period, 24 scholars to gave presentations (see Table, below). The  
complete list of Center seminars can be found on the CDAR website 

(http://www.cdarcenter.org/outreach/presentations/).  
 

Table 4. CDAR Center Seminars 
Date Lecturer Topic 

July 23, 2019 Sarah Harris 
Associate Professor 
Theoretical Physics Research Group 
University of Leeds  

Multiscale Simulations of 
Biological 
Macromolecules: from 
Atoms to the Continuum 
Limit 

http://www.cdarcenter.org/outreach/presentations/
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April 16, 2019 Minoli Perera, PharmD, PhD. 

Associate professor 
Department of Pharmacology 
Northwestern University 

African Ancestry 
Pharmaco-omics 

April 16, 2019 Lillian Chong, PhD 
Associate Professor 
Dept. of Chemistry 
University of Pittsburgh 

The Art of Possibility: 
Weighted Ensembles of 
Trajectories 

April 2, 2019 Dan Rosenbaum, PhD 
Associate professor 
Departments of Biophysics and Biochemistry 
UT Southwestern Medical Center 

Structure and Mechanism 
of Human CNS GPCRs 

March 29, 
2019 

Florencio Serrano Castillo 
Graduate Student Researcher 
Chemical Engineering  

Multi-Scale QSP Models 
of Cystic Fibrosis Airway 
Pathophysiology 

March 26, 
2019 

Patrick Marroum, PhD 
Senior Director& Senior Research Fellow 
Clinical Pharmacology and Pharmacometrics 
AbbVie Inc. 

The Role of Modeling and 
Simulation in Setting 
Clinically Relevant 
Specifications 

March 19, 
2019 

Timothy P. Ryan, PhD 
Research Fellow 
Dyslipidemia and Outcomes Research 
Eli Lily and Company, Indianapolis, Indiana 

Incorporating Genomic, 
Clinical, and Real-world 
Evidence Into Drug 
Discovery-perspectives 
and Future Directions 

March 12, 
2019 

Ali Saglam 
University of Pittsburgh 

Weighted ensemble 
sampling of rule-based 
models 

March 5, 2019 Jane M. Liebschutz, MD, MPH, FACVP 
Chief, Division of General Internal Medicine 
Director, Center for Research on Health Care 
University of Pittsburgh School of Medicine 

Approach to Opioid Use 
Disorder in General 
Medical Settings 

February 26, 
2019 

Yuanyuan Chen, PhD 
Assistant Professor 
Dept. of Ophthamology 
University of Pittsburgh  

The Roles of Rhodopsin 
Homeostasis and 
Signaling 

February 12, 
2019 

Weikang Wang, PhD 
Postdoctoral Fellow  
Dept. of Computational and Systems Biology 
University of Pittsburgh School of Medicine 

Single cell morphology 
trajectory analysis on cell 
cycle and Epithelial-to-
Mesenchymal transition 

November 20, 
2018 

John Schuetz, PhD 
Member, Vice Chair 
Department of Pharmaceutical Sciences 
St. Jude Children’s Research Hospital  

ABC transporters as 
disease modifiers: 
Porphyria & cholestasis 
of pregnancy 

November 13, 
2018 

Olivier Lichtarge, MD, PhD 
Cullen Chair and Professor 
Molecular and Human Genetics 
Baylor College of Medicine  

Making Personal Sense of 
Disease: Machine 
Learning and Mutational 
Calculus 

November 6, 
2018 

Yanqiao Zhang, MD 
FAHA Professor of Integrative Medical Sciences 
Northeast Ohio Medical University 

    Department  
 

Role of miR-34a in 
cardiometabolic diseases 

October 30, 
2018 

Amy Newman, PhD (New FRP) 
Deputy Scientific Director 
Medication Development Program 
Chief, Molecular Targets and Medications 
Discovery Branch 
NIDA-IRP/NIH 

Design of bitopic ligands 
with dopamine D2 
receptor Bias 

http://www.cdarcenter.org/outreach/presentations/
http://www.cdarcenter.org/outreach/presentations/
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October 30, 
2018 

Luca Ponzoni, PhD 
Postdoctoral Fellow  
Dept. of Computational and Systems Biology 
University of Pittsburgh School of Medicine 

Integrated Approach for 
Pathogenicity Prediction 
of Missense Variants 

October 30, 
2018 

James Krieger, PhD 
Postdoctoral Fellow 
Dept. of Computational and Systems Biology 
University of Pittsburgh School of Medicine 

Normal Mode Sampling 
Simulations and Electron 
Microscopy Image 
Analysis 

October 16, 
2018 

David Boulton, PhD 
Executive Director 
Quantitative Clinical Pharmacology 
AstraZeneca  

The role of clinical 
pharmacology in drug 
development: 
Dapagliflozin, a novel 
SGLT2 inhibitor, as an 
example  

October 2, 
2018 

Kai Tan, PHD 
Associate Professor 
Department of Pediatrics and Department of 
Biomedical and Health Informatics 
The Children’s Hospital of Philadelphia 
University of Pennsylvania  

Optimal control nodes in 
disease-perturbed 
networks as targets for 
combination therapy 

May 22, 2018 Ruiwen Zhang, MD, PhD, DABT, FAAAS 
Professor of Pharmacology and Toxicology 
Robert L. Boblitt Endowed Professor in Drug  
Discovery 
Director of UH Center for Drug Discovery  

Targeting p53-MDM2 
pathway: implication in 
cancer and 
neurogenerative diseases 

April 25, 2018 Velvet (Blair) Journigan, PhD (New P/FP) 
Assistant Professor of Medicinal Chemistry 
Department of Pharmaceutical Sciences 
Marshall University School of Pharmacy  

Structure-based design of 
novel small molecule 
ligands for the transient 
receptor potential 
melastatin 8 (TRPM8) ion 
channel: Insights and 
applications from recent 
structural biology 
advances 

March 21, 
2018 

Mary Torregrossa, PhD (Former P/FP, Now 
FRP) 
Associate Professor, 
Psychiatry, Translational Neuroscience 
Program, 
University of Pittsburgh  

Identification of Novel 
Regulators of Cocaine-
Associated Memories 

January 8, 
2018 

Inmaculada Hernandez, PharmD, PhD 
Assistant Professor 
Department of Pharmaceutical Sciences 
University of Pittsburgh  

Real-world Use, 
Outcomes, and (Value-
based?) Pricing of 
Pharmaceuticals: An 
Overview of My Research 
Program 

January 8, 
2018 

Philip Empey, PharmD, PhD 
Assistant Professor 
Department of Pharmaceutical Sciences 
University of Pittsburgh 

Pharmacogenomics to 
achieve precision 
medicine at Pitt/UPMC 

 
e) Joint Lab Meetings. In addition to the weekly meeting for all the cores, the Center also organizes 
monthly joint meetings between Core PIs and Core supported FRP Investigators. These are research 
work-in-progress sessions where students, postdocs, and faculty present informal research seminars, 
followed by thorough discussions. PIs of the P/F projects gave regular presentations for the evaluation 
of progress, with Center SSC members in attendance. These P30 CDAR meetings promoted 
knowledge sharing, research synergism, and building of collaborations. Below, we have listed the 
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talks that were presented during the 2018 – 2019 funding period. The complete list of joint monthly 
Meeting talks can be found at (http://www.cdarcenter.org/outreach/meetings/monthly/).  
 
 
Invited Speakers for CDAR Center Monthly Meetings (2018 – 2019) – 13 Talks, 17 Presenters 

July 10, 2019 
     Dr. Lirong Wang, Dr. Hongchun Cheng, Dr. Wei Wu and HaoHan Wang 

Talk Title 1: “The integration of Quartataweb and Target Hunter” (Hongchun and Lirong) 
Talk Title 2: “Genome-scale target and compound identification.  The first prototype of an 

interface to be delivered by the end of June” (Lirong, HaoHan, and Wei) 

     Zhiwei and Ryan  

Talk Title: “The PANDA Interface” 

     Junmei and Jiyoung 

Talk Title: “The progress in Druggability/Parameterization Interfaces” 
 
June 10, 2019 

Leadership Meeting for P30 Resubmission 
 
March 21, 2019 
     Dr. Xibing He and Beihong Ji  

Talk Title: “Improve the Simulations of Biological Systems from Two Aspects: Force Field and  
Sampling” 

     Beihong Ji  
 Talk Title: “Phamacokinetics modeling and molecular modeling of Drug-Drug interaction  
  between opioid and benzodiazepine.” 
 
Jan 24, 2019 
     Haohan Wang (Graduate Student, Eric Xing’s lab, CMU) 
 Talk Title #1:  “Coupled Mixed Model for Joint Genetic Analysis of Complex Disorders with  
  Two Independently Collected Data Sets” 
 Talk Title #2:  “Removing Confounding Factors Associated Weights in Deep Neural  
  Networks Improves the Prediction Accuracy for Healthcare Applications” 
 
December 3, 2018 
     Fen Pei (Core B Graduate student) 

Talk Title: “Quantitative systems pharmacological analysis of drugs of abuse reveals the  
pleiotropy of targets and the effector role of mTORC1.” 

 
July 31, 2018 

Leadership Meeting for P30 Resubmission 
 
June 5, 2018 
     Zhiting Hu   

Talk Title: “Text Generation: Algorithms and Toolkits” 
 
May 22, 2018 
     Ruiwen Zhang, MD, Ph.D., DABT, FAAAS, Professor of Pharmacology and Toxicology, Robert L. 

Boblitt Endowed Professor in Drug Discovery, Director of UH Center for Drug 
Discovery 

Talk Title: “Targeting p53-MDM2 pathway: implication in cancer and  
neurogenerative diseases.” 

 
April 25, 2018 
     Velvet (Blair) Journigan, Assistant Professor of Medicinal Chemistry, Department of  

http://www.cdarcenter.org/outreach/meetings/monthly/
http://www.uh.edu/pharmacy/directory-home/pps-faculty/ruiwen-zhang/
http://www.uh.edu/pharmacy/directory-home/pps-faculty/ruiwen-zhang/
http://www.uh.edu/pharmacy/directory-home/pps-faculty/ruiwen-zhang/
http://www.cdarcenter.org/outreach/meetings/monthly/18767-2/
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Pharmaceutical Sciences, Marshall University School of Pharmacy 

Talk Title: “Structure-based design of novel small molecule ligands for the transient receptor 
potential melastatin 8 (TRPM8) ion channel: Insights and applications from recent 
structural biology advances.” 

 
March 19, 2018 
     Mary Torregrossa (Associate Professor, Department of Psychiatry, Translational Neuroscience  

Program, University of Pittsburgh School of Medicine) 
Talk Title: “Identification of Novel Regulators of Cocaine-Associated Memories.” 

 
 

f) Support of New Funding Efforts of FRP PIs: CDAR AdminCore also assisted in 27 CDAR-

supported grant submissions (18 awarded: 5 to junior faculties, 6 NIH R01s, and 2 fellowships) (see 
individual Core sections for details). 

Table 5. Status of Research Grant submissions assisted by CDAR resources/activities (2014-19)  

 

Investigator 
(Affiliation) 

Grant Title 
Funding 
Source/Grant # 

F
u

n
d

e
d

 A
w

a
rd

s
 

Mary Torregrossa (Pitt) Mechanisms regulating cocaine memory strength NIH 5R01DA042029 

Andreas Pfenning (CMU) Regulatory mechanisms underlying predisposition to substance use disorders NIH 1DP1DA046585  

Oscar Lopez, D Sun (Pitt) Chemogenomics syst pharmacology approach for TBI and AD research 
DOD W81XWH-16-1-
049   

Inmaculada Hernandez  

(Pitt) 

Claims data mining to predict side effects of anti-dementia drugs  
ALZ AARGD-17-
500234 

Patient, system-level determinants of oral anticoagulation in atrial fibrillation NIH K01HL142847   

Yong Wan (Northwestern) Targeting the interplay between KLF4 and PRMT5 in carcinogenesis NIH R01CA202963     

Satdarshan Monga (Pitt) 
YAP & beta-catenin interactions in liver: implications in pathophysiology NIH 5R01CA204586   

University of Pittsburgh liver research center NIH P30KDK120531   

Seojin Bang (CMU) Knowledge distilled multiview learning for identifying disease subtypes CMU ML Fellowship  

David Perlmutter (Wustl) New therapies for liver fibrosis and hyperproliferation in 1-AT deficiency NIH P01DK096990 

Sweet Robert (Pitt) Synaptic resilience to psychosis in Alzheimer Disease NIH R01MH116046 

Joel Greenberger (Pitt) Signature directed sequential delivery of small molecule radiation mitigators NIH 5U19AI068021 

Rama Mallampalli (Pitt) Immunosuppression in acute lung injury NIH 2P01HL114453 

Alexander Sorkin (Pitt) Regulation of dopamine transporter by trafficking NIH 5R01DA014204 

Sally Wenzel (Pitt) Type-2 or not type-2: this is the (therapeutic) question NIH 5UG1HL139098 

Cheng Zhang (Pitt) Structure, pharmacology and signaling of GPCRs in inflammation NIH R35GM128641 

Ziv Bar-Joseph (CMU) Comprehensive, infrastructure, mapping & tools for HuBMAP HIVE NIH 1OT2OD026682 

Henry Dong (Pitt) Myeloid FoxO1 in lipid metabolism NIH 1R01DK120310 

P
e

n
d

in
g

 

A
w

a
rd

s
 Zachary Freyberg (Pitt) A multidisciplinary approach to decipher dopamine D2R signaling NIH R35     

Valerian Kagan (Pitt) Redox phospholipoxysome regulation of epithelial ferroptosis in asthma NIH R01  

Hulya Bayir & Clark (Pitt) Mitochondria-targeted therapies for cerebral ischemia in developing brain NIH R01   

Sally Wenzel (Pitt) Protein-oxidized phospholipid interactions in epithelial cell fate & asthma  NIH R01  

U
n

fu
n

d
e

d
 

Filippo Pullara (Pitt) Comp sys pathology platform for analysis of hyperplexed imaging data PITT CTSI Fellowship 

Stephanie Aldrich (Pitt) Predicting resting- and active- structures of Cav2.1 Ca++ channel VSD III 
PITT Mellon 
Fellowship 

X Lu, J. Wang (Pitt) Integrative platform: causal inference, chemogenomics for target discovery NIH U01  

Kevin Xiao (Pitt) Novel biomarkers for atrial fibrillation (AF) severity AHA Center Grant 

A. Van Demark (Pitt) PEBP1 interactions regulating polyunsaturated phospholipid signaling in asthma NIH R01 

 
 
 

RESULTS DISSEMINATED TO COMMUNITIES OF INTEREST  
Dissemination of findings and sharing of data and copyright protected information are available 
through the CDAR Network over the Internet. Established resources, including hardware/software, 
are shared with others who have interests in applying computational technologies available to the 

https://projectreporter.nih.gov/project_info_description.cfm?aid=9756459&icde=46511702&ddparam=&ddvalue=&ddsub=&cr=8&csb=default&cs=ASC&pball=
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CDAR center to their research projects. Avenues whereby results are disseminated and information 
is exchanged include: 
 
(1) Center Programs: all the cores have participated in interactive educational enrichment programs 
supported by the Center. They have been described, in part, above. Complete lists can be found at 

the CDAR Center’s website (http://www.cdarcenter.org). They are briefly described below. 

 
(a) CDAR Seminars. The Center has worked closely with Pitt and CMU departments (academic 
homes of the PIs) to select speakers relevant to the goals of the Center in general, and shared 
costs for invited speakers, selected from amongst leading scientists/laboratories in the field of 
DAR. In the third year, we have invited 17 scholars to give speeches in P30 meeting for knowledge 
sharing and communicating. (see details in section B4) 
 
(b) Journal Clubs. All Cores also organize weekly literature review presentations in the areas of 
computational chemogenomics (Dr. Xie), computational biology (Dr. Bahar), and computational 
genomics (Dr. Xing) in addition to the departmental journal clubs. Trainees/students in each 
department are also required to make at least two presentations a year.   
 
(c) Joint Lab Meetings. In addition to the weekly meeting for all the cores, the Center also 
organizes monthly joint meetings between Core PIs and Core supported FRP Investigators. These 
are research work-in-progress sessions where students, postdocs, and faculty present informal 
research seminars, followed by thorough discussions. (See details in section B4) 

 
(d)  Fellows Training Course/Workshop.  (See details, above) 
 
(e) CMU/Pitt Educational Opportunities. Our research has been disseminated by teaching in 
class. CDAR investigators have contributed to existing educational programs at Pitt and CMU, 
including the Computational Chemistry and computer-aided drug design lectures in the Advancing 
Medicinal Chemistry and Pharmaceutical Foundation courses. Dr. Ayoob works together with 
these programs’ coordinators to enable appropriate contributions from CDAR PIs that will bring a 
higher profile to DAR and provide education, research, and training opportunities through 
mentored research opportunities and didactic components to students interested in this field of 
study. 

 
(2) Scientific Progress & Dissemination of Results: 
 

(a) Updated Core Technologies and Programs  

(See Products section, below.) 
 

(b) Conferences:  During the first funding cycle, Center members have attended several 
conferences, both national and international) and presented: 

(See individual Core reports for details.) 
       

(c) Invited Talks: In the first funding cycle, CDAR PIs presented 67 talks at national and 
international conferences. In the 2018 – 2019 period, CDAR Center PIs and senior members gave 
24 invited talks. 

Core A – 10 
Core B – 12 
Core C – 2 

(See individual Core reports for details.) 
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(d) Posters: In the 2018 – 2019 period, CDAR Center PIs and senior members gave 27 invited 
talks. 

Core A – 14 
Core B – 9 
Core C – 4 

(See individual Core reports for details.) 

(e) National Scientific Research Symposium hosted by CDAR Center – Aug. 8-9, 2016 

In the first funding cycle, CDAR Center hosted a 2-day Scientific Research Innovation Research 
Conference which was held concurrently with our Second Annual P30 CDAR EAB Meeting and a 
joint Poster Session. The purpose of the symposium was to further the CDAR’s scientific 
interactions with NIDA-pertinent research at large, and to facilitate information exchange and data 
sharing with the broader community. All Cores shared in the organization and presentation of 
research.   

 
PRODUCTS 

 
Publications 

As of September, 2019, the Center has a total of 143 publications, 53% of which1-75 are focused 
directly on either DA1-46, DA-related health issues (i.e., asthma, cardiovascular problems)47-59, or on 
associated neurological disorders (NDs)60-75, all of which fall within the scope of the Program 
Announcement (PAR-18-225). Of the remaining publications, 52 describe development and 
implementation of methods and software, as we proposed in the 1st cycle proposal76-127, and 16 describe 
the findings from collaborative studies with researchers using our resources128-143. It is worth noting that 
within the past year (since Oct 1st, 2018), we have 43 new publications, 59% of which are focused on 
either DA or DA-related health issues. All 143 CDAR Center publications are listed below and are 
clustered in the 5 categories mentioned above. 

I.  Drug-abuse (DA) (46) 

1. Alqarni, M.;  Myint, K. Z.;  Tong, Q.;  Yang, P.;  Bartlow, P.;  Wang, L.;  Feng, R.; Xie, X.-Q., 
Examining the Critical Roles of Human CB2 Receptor Residues Valine 3.32 (113) and Leucine 
5.41 (192) in Ligand Recognition and Downstream Signaling Activities. Biochem. Biophys. Res. 
Commun. 2014, 452 (3), 334-339. 

2. Bertholomey, M. L.;  Stone, K.;  Lam, T. T.;  Bang, S.;  Wu, W.;  Nairn, A. C.;  Taylor, J. R.; 
Torregrossa, M. M., Phosphoproteomic Analysis of the Amygdala Response to Adolescent 
Glucocorticoid Exposure Reveals G-Protein Coupled Receptor Kinase 2 as a Target for 
Reducing Motivation for Alcohol. Proteomes 2018, 6 (4), 41. 

3. Bian, Y.;  Feng, Z.;  Yang, P.; Xie, X. Q., Integrated In Silico Fragment-Based Drug Design: Case 
Study with Allosteric Modulators on Metabotropic Glutamate Receptor 5. AAPS J 2017, 19 (4), 
1235-1248. 

4. Bian, Y.;  Jing, Y.;  Wang, L.;  Ma, S.;  Jun, J. J.; Xie, X. Q., Prediction of Orthosteric and Allosteric 
Regulations on Cannabinoid Receptors Using Supervised Machine Learning Classifiers. Mol 
Pharm 2019, 16 (6), 2605-2615. 

5. Bian, Y. M.;  He, X. B.;  Jing, Y. K.;  Wang, L. R.;  Wang, J. M.; Xie, X. Q., Computational systems 
pharmacology analysis of cannabidiol: a combination of chemogenomics-knowledgebase 
network analysis and integrated in silico modeling and simulation. Acta Pharmacol Sin 2019, 
40 (3), 374-386. 

6. Chen, M.;  Jing, Y.;  Wang, L.;  Feng, Z.; Xie, X. Q., DAKB-GPCRs: An Integrated Computational 
Platform for Drug Abuse Related GPCRs. J Chem Inf Model 2019, 59 (4), 1283-1289. 
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7. Cheng, J.;  Wang, S.;  Lin, W.;  Wu, N.;  Wang, Y.;  Chen, M.;  Xie, X. Q.; Feng, Z., Computational 

Systems Pharmacology-Target Mapping for Fentanyl-Laced Cocaine Overdose. ACS Chem 
Neurosci 2019, 10 (8), 3486-3499. 

8. Cheng, M. H.; Bahar, I., Molecular Mechanism of Dopamine Transport by Human Dopamine 
Transporter. Structure 2015, 23 (11), 2171-81. 

9. Cheng, M. H.; Bahar, I., Monoamine transporters: structure, intrinsic dynamics and allosteric 
regulation. Nat Struct Mol Biol 2019, 26 (7), 545-556. 

10. Cheng, M. H.;  Block, E.;  Hu, F.;  Cobanoglu, M. C.;  Sorkin, A.; Bahar, I., Insights into the 
Modulation of Dopamine Transporter Function by Amphetamine, Orphenadrine, and Cocaine 
Binding. Front Neurol 2015, 6, 134. 

11. Cheng, M. H.;  Garcia-Olivares, J.;  Wasserman, S.;  DiPietro, J.; Bahar, I., Allosteric modulation 
of human dopamine transporter activity under conditions promoting its dimerization. J Biol 
Chem 2017, 292 (30), 12471-12482. 

12. Cheng, M. H.;  Kaya, C.; Bahar, I., Quantitative Assessment of the Energetics of Dopamine 
Translocation by Human Dopamine Transporter. J Phys Chem B 2018, 122 (21), 5336-5346. 

13. Cheng, M. H.;  Ponzoni, L.;  Sorkina, T.;  Lee, J. Y.;  Zhang, S.;  Sorkin, A.; Bahar, I., Trimerization 
of dopamine transporter triggered by AIM-100 binding: Molecular mechanism and effect of 
mutations. Neuropharmacology 2019, 107676. 

14. Cheng, M. H.;  Torres-Salazar, D.;  Gonzalez-Suarez, A. D.;  Amara, S. G.; Bahar, I., Substrate 
transport and anion permeation proceed through distinct pathways in glutamate 
transporters. Elife 2017, 6. 

15. Dutta, A.;  Krieger, J.;  Lee, J. Y.;  Garcia-Nafria, J.;  Greger, I. H.; Bahar, I., Cooperative Dynamics 
of Intact AMPA and NMDA Glutamate Receptors: Similarities and Subfamily-Specific 
Differences. Structure 2015, 23 (9), 1692-1704. 

16. Feng, R.;  Tong, Q.;  Xie, Z.;  Cheng, H.;  Wang, L.;  Lentzsch, S.;  Roodman, G. D.; Xie, X. Q., 
Targeting cannabinoid receptor-2 pathway by phenylacetylamide suppresses the 
proliferation of human myeloma cells through mitotic dysregulation and cytoskeleton 
disruption. Mol Carcinog 2015, 54 (12), 1796-806. 

17. Feng, Z.;  Alqarni, M. H.;  Yang, P.;  Tong, Q.;  Chowdhury, A.;  Wang, L.; Xie, X. Q., Modeling, 
molecular dynamics simulation, and mutation validation for structure of cannabinoid 
receptor 2 based on known crystal structures of GPCRs. J Chem Inf Model 2014, 54 (9), 2483-
99. 

18. Feng, Z.;  Hu, G.;  Ma, S.; Xie, X. Q., Computational Advances for the Development of Allosteric 
Modulators and Bitopic Ligands in G Protein-Coupled Receptors. AAPS J 2015, 17 (5), 1080-
95. 

19. Feng, Z.;  Ma, S.;  Hu, G.; Xie, X. Q., Allosteric Binding Site and Activation Mechanism of Class 
C G-Protein Coupled Receptors: Metabotropic Glutamate Receptor Family. AAPS J 2015, 17 
(3), 737-53. 

20. Ge, H.;  Bian, Y.;  He, X.;  Xie, X. Q.; Wang, J., Significantly different effects of 
tetrahydroberberrubine enantiomers on dopamine D1/D2 receptors revealed by experimental 
study and integrated in silico simulation. J Comput Aided Mol Des 2019, 33 (4), 447-459. 

21. Gur, M.;  Cheng, M. H.;  Zomot, E.; Bahar, I., Effect of Dimerization on the Dynamics of 
Neurotransmitter:Sodium Symporters. J Phys Chem B 2017, 121 (15), 3657-3666. 

22. Gur, M.;  Zomot, E.;  Cheng, M. H.; Bahar, I., Energy landscape of LeuT from molecular 
simulations. J Chem Phys 2015, 143 (24), 243134. 

23. Hu, J.;  Feng, Z.;  Ma, S.;  Zhang, Y.;  Tong, Q.;  Alqarni, M. H.;  Gou, X.; Xie, X. Q., Difference and 
Influence of Inactive and Active States of Cannabinoid Receptor Subtype CB2: From 
Conformation to Drug Discovery. J Chem Inf Model 2016, 56 (6), 1152-63. 
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24. Hu, Z.;  Jing, Y.;  Xue, Y.;  Fan, P.;  Wang, L.;  Tarter, R.;  Kirisci, L.;  Vanyukov, M. M.;  Wang, J.; 

Xie, X.-Q., Analysis of substance use and its outcomes by machine learning: II. Derivation 
and prediction of the trajectory of substance use severity. Drug and Alcohol Dependence 2019, 
In press. 

25. Ji, B.;  Liu, S.;  Xue, Y.;  He, X.;  Man, V. H.;  Xie, X.-Q.; Wang, J., Prediction of drug-drug 
interactions between opioids and overdosed benzodiazepines using physiologically-based 
pharmacokinetic (PBPK) modeling and simulation. Drugs R & D 2019, 19 (3), 297-305. 

26. Jing, Y.;  Hu, Z.;  Fan, P.;  Xue, Y.;  Wang, L.;  Tarter, R.;  Kirisci, L.;  Vanyukov, M. M.;  Wang, J.; 
Xie, X.-Q., Analysis of substance use and its outcomes by machine learning I. Childhood 
Evaluation of Liability to Substance Use Disorder. Drug And Alcohol Dependence 2019, In press. 

27. Jun, I.;  Cheng, M. H.;  Sim, E.;  Jung, J.;  Suh, B. L.;  Kim, Y.;  Son, H.;  Park, K.;  Kim, C. H.;  Yoon, 
J. H.;  Whitcomb, D. C.;  Bahar, I.; Lee, M. G., Pore dilatation increases the bicarbonate 
permeability of CFTR, ANO1 and glycine receptor anion channels. J Physiol 2016, 594 (11), 
2929-55. 

28. Kaya, C.;  Cheng, M. H.;  Block, E. R.;  Bartol, T. M.;  Sejnowski, T. J.;  Sorkin, A.;  Faeder, J. R.; 
Bahar, I., Heterogeneities in Axonal Structure and Transporter Distribution Lower Dopamine 
Reuptake Efficiency. eNeuro 2018, 5 (1). 

29. Krieger, J.;  Bahar, I.; Greger, I. H., Structure, Dynamics, and Allosteric Potential of Ionotropic 
Glutamate Receptor N-Terminal Domains. Biophys J 2015, 109 (6), 1136-48. 

30. Krieger, J.;  Lee, J. Y.;  Greger, I. H.; Bahar, I., Activation and desensitization of ionotropic 
glutamate receptors by selectively triggering pre-existing motions. Neurosci Lett 2019, 700, 
22-29. 

31. Lee, S.;  Kong, S.; Xing, E. P., A network-driven approach for genome-wide association 
mapping. Bioinformatics 2016, 32 (12), i164-i173. 

32. Ma, S.;  Cheng, M. H.;  Guthrie, D. A.;  Newman, A. H.;  Bahar, I.; Sorkin, A., Targeting of dopamine 
transporter to filopodia requires an outward-facing conformation of the transporter. Sci Rep 
2017, 7 (1), 5399. 

33. Man, V. H.;  He, X.;  Derreumaux, P.;  Ji, B.;  Xie, X. Q.;  Nguyen, P. H.; Wang, J., Effects of All-
Atom Molecular Mechanics Force Fields on Amyloid Peptide Assembly: The Case of Abeta16-
22 Dimer. J Chem Theory Comput 2019, 15 (2), 1440-1452. 

34. Pei, F.;  Li, H.;  Liu, B.; Bahar, I., Quantitative Systems Pharmacological Analysis of Drugs of 
Abuse Reveals the Pleiotropy of Their Targets and the Effector Role of mTORC1. Front 
Pharmacol 2019, 10, 191. 

35. Ponzoni, L.;  Zhang, S.;  Cheng, M. H.; Bahar, I., Shared dynamics of LeuT superfamily members 
and allosteric differentiation by structural irregularities and multimerization. Philos Trans R 
Soc Lond B Biol Sci 2018, 373 (1749). 

36. van Dijk, L.;  Giladi, M.;  Refaeli, B.;  Hiller, R.;  Cheng, M. H.;  Bahar, I.; Khananshvili, D., Key 
residues controlling bidirectional ion movements in Na(+)/Ca(2+) exchanger. Cell Calcium 
2018, 76, 10-22. 

37. Wang, L.; Xie, X. Q., Computational target fishing: what should chemogenomics researchers 
expect for the future of in silico drug design and discovery? Future Med Chem 2014, 6 (3), 
247-9. 

38. Wang, Y.;  Lin, W.;  Wu, N.;  He, X.;  Wang, J.;  Feng, Z.; Xie, X. Q., An insight into paracetamol 
and its metabolites using molecular docking and molecular dynamics simulation. J Mol Model 
2018, 24 (9), 243. 

39. Wang, Y. Q.;  Lin, W. W.;  Wu, N.;  Wang, S. Y.;  Chen, M. Z.;  Lin, Z. H.;  Xie, X. Q.; Feng, Z. W., 
Structural insight into the serotonin (5-HT) receptor family by molecular docking, molecular 
dynamics simulation and systems pharmacology analysis. Acta Pharmacol Sin 2019, 40, 1138–
1156. 
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40. Wu, N.;  Feng, Z.;  He, X.;  Kwon, W.;  Wang, J.; Xie, X. Q., Insight of Captagon Abuse by 

Chemogenomics Knowledgebase-guided Systems Pharmacology Target Mapping Analyses. 
Sci Rep 2019, 9 (1), 2268. 

41. Wu, X.;  Xie, S.;  Wang, L.;  Fan, P.;  Ge, S.;  Xie, X. Q.; Wu, W., A computational strategy for 
finding novel targets and therapeutic compounds for opioid dependence. PLoS One 2018, 13 
(11), e0207027. 

42. Xie, X. Q.;  Wang, L.;  Liu, H.;  Ouyang, Q.;  Fang, C.; Su, W., Chemogenomics knowledgebased 
polypharmacology analyses of drug abuse related G-protein coupled receptors and their 
ligands. Front Pharmacol 2014, 5, 3. 

43. Xu, X.;  Ma, S.;  Feng, Z.;  Hu, G.;  Wang, L.; Xie, X. Q., Chemogenomics knowledgebase and 
systems pharmacology for hallucinogen target identification-Salvinorin A as a case study. J 
Mol Graph Model 2016, 70, 284-295. 

44. Zhang, S.;  Jia, N.;  Shao, P.;  Tong, Q.;  Xie, X. Q.; Bai, M., Target-selective phototherapy using 
a ligand-based photosensitizer for type 2 cannabinoid receptor. Chem Biol 2014, 21 (3), 338-
44. 

45. Zhou, L.;  Zhou, S.;  Yang, P.;  Tian, Y.;  Feng, Z.;  Xie, X. Q.; Liu, Y., Targeted inhibition of the 
type 2 cannabinoid receptor is a novel approach to reduce renal fibrosis. Kidney Int 2018, 94 
(4), 756-772. 

46. Zomot, E.;  Gur, M.; Bahar, I., Microseconds simulations reveal a new sodium-binding site and 
the mechanism of sodium-coupled substrate uptake by LeuT. J Biol Chem 2015, 290 (1), 544-
55. 

 

II.   DA-related health issues (i.e., asthma, cardiovascular problems) or DA-assoc. 
cardiotoxicity (also NIDA-funded) (13) 

47. Anthonymuthu, T. S.;  Kenny, E. M.;  Shrivastava, I.;  Tyurina, Y. Y.;  Hier, Z. E.;  Ting, H.-C.;  Dar, 
H. H.;  Tyurin, V. A.;  Nesterova, A.;  Amoscato, A. A.;  Mikulska-Ruminska, K.;  Rosenbaum, J. C.;  
Mao, G.;  Zhao, J.;  Conrad, M.;  Kellum, J. A.;  Wenzel, S. E.;  VanDemark, A. P.;  Bahar, I.;  Kagan, 
V. E.; Bayır, H., Empowerment of 15-lipoxygenase catalytic competence in selective oxidation 
of membrane ETE-PE to ferroptotic death signals, HpETE-PE. Journal of the American Chemical 
Society 2018, 140 (51), 17835-17839. 

48. Bang, S.-J.; Wu, W. In Naive Bayes ensemble: A new approach to classifying unlabeled multi-
class asthma subjects, 2016 IEEE International Conference on Bioinformatics and Biomedicine 
(BIBM), IEEE: 2016; pp 460-465. 

49. Feng, Z.;  Pearce, L. V.;  Xu, X.;  Yang, X.;  Yang, P.;  Blumberg, P. M.; Xie, X. Q., Structural 
insight into tetrameric hTRPV1 from homology modeling, molecular docking, molecular 
dynamics simulation, virtual screening, and bioassay validations. J Chem Inf Model 2015, 55 
(3), 572-88. 

50. Feng, Z.;  Pearce, L. V.;  Zhang, Y.;  Xing, C.;  Herold, B. K.;  Ma, S.;  Hu, Z.;  Turcios, N. A.;  Yang, 
P.;  Tong, Q.;  McCall, A. K.;  Blumberg, P. M.; Xie, X. Q., Multi-Functional Diarylurea Small 
Molecule Inhibitors of TRPV1 with Therapeutic Potential for Neuroinflammation. AAPS J 2016, 
18 (4), 898-913. 

51. Gao, Y.;  Yang, P.;  Shen, H.;  Yu, H.;  Song, X.;  Zhang, L.;  Zhang, P.;  Cheng, H.;  Xie, Z.;  Hao, 
S.;  Dong, F.;  Ma, S.;  Ji, Q.;  Bartlow, P.;  Ding, Y.;  Wang, L.;  Liu, H.;  Li, Y.;  Cheng, H.;  Miao, 
W.;  Yuan, W.;  Yuan, Y.;  Cheng, T.; Xie, X. Q., Small-molecule inhibitors targeting INK4 protein 
p18(INK4C) enhance ex vivo expansion of haematopoietic stem cells. Nat Commun 2015, 6, 
6328. 

52. Howrylak, J. A.;  Moll, M.;  Weiss, S. T.;  Raby, B. A.;  Wu, W.; Xing, E. P., Gene expression 
profiling of asthma phenotypes demonstrates molecular signatures of atopy and asthma 
control. J Allergy Clin Immunol 2016, 137 (5), 1390-1397 e6. 
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53. Marchetti-Bowick, M.;  Yu, Y.;  Wu, W.; Xing, E. P., A penalized regression model for the joint 

estimation of eQTL associations and gene network structure. The Annals of Applied Statistics 
2019, 13 (1), 248-270. 

54. Wu, W.;  Bang, S.;  Bleecker, E. R.;  Castro, M.;  Denlinger, L.;  Erzurum, S. C.;  Fahy, J. V.;  
Fitzpatrick, A. M.;  Gaston, B. M.;  Hastie, A. T.;  Israel, E.;  Jarjour, N. N.;  Levy, B. D.;  Mauger, D. 
T.;  Meyers, D. A.;  Moore, W. C.;  Peters, M.;  Phillips, B. R.;  Phipatanakul, W.;  Sorkness, R. L.; 
Wenzel, S. E., Multiview Cluster Analysis Identifies Variable Corticosteroid Response 
Phenotypes in Severe Asthma. Am J Respir Crit Care Med 2019, 199 (11), 1358-1367. 

55. Wu, W.;  Bleecker, E.;  Moore, W.;  Busse, W. W.;  Castro, M.;  Chung, K. F.;  Calhoun, W. J.;  
Erzurum, S.;  Gaston, B.;  Israel, E.;  Curran-Everett, D.; Wenzel, S. E., Unsupervised phenotyping 
of Severe Asthma Research Program participants using expanded lung data. J Allergy Clin 
Immunol 2014, 133 (5), 1280-8. 

56. Xie, X. Q.;  Yang, P.;  Zhang, Y.;  Zhang, P.;  Wang, L.;  Ding, Y.;  Yang, M.;  Tong, Q.;  Cheng, H.;  
Ji, Q.;  McGuire, T.;  Yuan, W.;  Cheng, T.; Gao, Y., Discovery of novel INK4C small-molecule 
inhibitors to promote human and murine hematopoietic stem cell ex vivo expansion. Sci Rep 
2015, 5, 18115. 

57. Xue, Y.;  Feng, Z. W.;  Li, X. Y.;  Hu, Z. H.;  Xu, Q.;  Wang, Z.;  Cheng, J. H.;  Shi, H. T.;  Wang, Q. 
B.;  Wu, H. Y.;  Xie, X. Q.; Lv, Q. Z., The efficacy and safety of cilostazol as an alternative to 
aspirin in Chinese patients with aspirin intolerance after coronary stent implantation: a 
combined clinical study and computational system pharmacology analysis. Acta Pharmacol 
Sin 2018, 39 (2), 205-212. 

58. Zhang, H.;  Ma, S.;  Feng, Z.;  Wang, D.;  Li, C.;  Cao, Y.;  Chen, X.;  Liu, A.;  Zhu, Z.;  Zhang, J.;  
Zhang, G.;  Chai, Y.;  Wang, L.; Xie, X. Q., Cardiovascular Disease Chemogenomics 
Knowledgebase-guided Target Identification and Drug Synergy Mechanism Study of an 
Herbal Formula. Sci Rep 2016, 6, 33963. 

59. Zhang, Y.;  Wang, L.;  Feng, Z.;  Cheng, H.;  McGuire, T. F.;  Ding, Y.;  Cheng, T.;  Gao, Y.; Xie, X. 
Q., StemCellCKB: An Integrated Stem Cell-Specific Chemogenomics KnowledgeBase for 
Target Identification and Systems-Pharmacology Research. J Chem Inf Model 2016, 56 (10), 
1995-2004. 

 

III. DA-associated neurological disorders (NDs) (16) 

60. Adamik, J.;  Silbermann, R.;  Marino, S.;  Sun, Q.;  Anderson, J. L.;  Zhou, D.;  Xie, X. Q.;  Roodman, 
G. D.; Galson, D. L., XRK3F2 Inhibition of p62-ZZ Domain Signaling Rescues Myeloma-Induced 
GFI1-Driven Epigenetic Repression of the Runx2 Gene in Pre-osteoblasts to Overcome 
Differentiation Suppression. Front Endocrinol (Lausanne) 2018, 9, 344. 

61. Cha-Molstad, H.;  Lee, S. H.;  Kim, J. G.;  Sung, K. W.;  Hwang, J.;  Shim, S. M.;  Ganipisetti, S.;  
McGuire, T.;  Mook-Jung, I.;  Ciechanover, A.;  Xie, X. Q.;  Kim, B. Y.; Kwon, Y. T., Regulation of 
autophagic proteolysis by the N-recognin SQSTM1/p62 of the N-end rule pathway. Autophagy 
2018, 14 (2), 359-361. 

62. Cha-Molstad, H.;  Yu, J. E.;  Feng, Z.;  Lee, S. H.;  Kim, J. G.;  Yang, P.;  Han, B.;  Sung, K. W.;  
Yoo, Y. D.;  Hwang, J.;  McGuire, T.;  Shim, S. M.;  Song, H. D.;  Ganipisetti, S.;  Wang, N.;  Jang, 
J. M.;  Lee, M. J.;  Kim, S. J.;  Lee, K. H.;  Hong, J. T.;  Ciechanover, A.;  Mook-Jung, I.;  Kim, K. P.;  
Xie, X. Q.;  Kwon, Y. T.; Kim, B. Y., p62/SQSTM1/Sequestosome-1 is an N-recognin of the N-
end rule pathway which modulates autophagosome biogenesis. Nat Commun 2017, 8 (1), 102. 

63. Fan, P.;  Wang, N.;  Wang, L.; Xie, X. Q., Autophagy And Apoptosis Specifc Knowledgebases-
Guided Systems Pharmacology Drug Research. Curr Cancer Drug Targets 2019. 

64. Hu, Z.;  Wang, L.;  Ma, S.;  Kirisci, L.;  Feng, Z.;  Xue, Y.;  Klunk, W. E.;  Kamboh, M. I.;  Sweet, R. 
A.;  Becker, J.;  Lv, Q.;  Lopez, O. L.; Xie, X. Q., Synergism of antihypertensives and 
cholinesterase inhibitors in Alzheimer's disease. Alzheimers Dement (N Y) 2018, 4, 542-555. 
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65. Lee, J. Y.;  Feng, Z.;  Xie, X. Q.; Bahar, I., Allosteric Modulation of Intact gamma-Secretase 

Structural Dynamics. Biophys J 2017, 113 (12), 2634-2649. 

66. Lee, S.;  Lozano, A.;  Kambadur, P.; Xing, E. P., An Efficient Nonlinear Regression Approach 
for Genome-wide Detection of Marginal and Interacting Genetic Variations. J Comput Biol 
2016, 23 (5), 372-89. 

67. Lee, S.;  Wang, H.; Xing, E. P., Backward genotype-transcript-phenotype association mapping. 
Methods 2017, 129, 18-23. 

68. Liu, H.;  Wang, L.;  Lv, M.;  Pei, R.;  Li, P.;  Pei, Z.;  Wang, Y.;  Su, W.; Xie, X. Q., AlzPlatform: an 
Alzheimer's disease domain-specific chemogenomics knowledgebase for polypharmacology 
and target identification research. J Chem Inf Model 2014, 54 (4), 1050-60. 

69. Liu, H.;  Wang, L.;  Su, W.; Xie, X. Q., Advances in recent patent and clinical trial drug 
development for Alzheimer's disease. Pharm Pat Anal 2014, 3 (4), 429-47. 

70. Ma, S.;  Attarwala, I. Y.; Xie, X. Q., SQSTM1/p62: A Potential Target for Neurodegenerative 
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Website(s) or Other Internet Site(s) 

The official website of CDAR (http://www.cdarcenter.org) has been operating well for 5 years, 

providing a web portal for fully accessing all of our computational tools and databases. This website 

http://www.cdarcenter.org/
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illustrates our personnel, research, technologies, outreach, publications, as well as meetings and 
news information of CDAR. 

The AdminCore has also recently begun facilitating the implementation, dissemination, and broad 
use of CDAR resources via a new Platform for Abused-Drugs and Neurological Diseases 
Association (PANDA) (computational methods, software, application programming interfaces 
(APIs), databases(DBs), and GPU cloud servers) to benefit the FRPs, P/FPs, and the broader DAR 

community. PANDA (http://www.cdarcenter.org/panda/) will be a major resource that will integrate 

our tools facilitate the efficient usage of CDAR data and tools by our collaborators and the broader 
DA research (DAR) community. The overall structure of the PANDA and the roadmap of the task-
driven webtool are illustrated in Fig. 1. 

 

Fig 1. PANDA roadmap for computational analysis of DA/SUD clinical data at molecular-, genetic-, 
cellular-, and systems-levels and using CDAR tools and knowledgebases. The wheel diagram (left), from 
the PANDA website (http://www.cdarcenter.org/panda/) will be an interactive portal that provides access to the 
tools and databases developed by CDAR, along with task-driven protocols. The schematic (right) illustrates a 
potential protocol for a DA/SUD researcher to utilize CDAR tools. Starting from GWAS data, advanced gene 
analysis tools developed by Core C will identify SNPs associated with DA/SUD; proteins encoded by genes 
associated with the identified SNPs will be analyzed to determine their pathogenicity and the effects of genetic 
variants using tool RHAPSODY developed by Core B. Next, the pathogenic proteins are subjected to structure-
based analyses of their functional dynamics to identify target sites, and high-throughput virtual screening of 
small molecules yields lead compounds that bind those sites using Core A tools. Promising drug candidates 
can be further assessed for potential off-target interactions using the integrated TargetHunter (Core A) and 
Quartataweb (Core B) servers. 

 
 

Technologies or techniques 

In the past years, we have developed a set of algorithms/tools/software and knowledgebases for DAR and 
rational drug design for broad-spectrum abused-/neurological drug targets.  As a national resource for 
DAR and computer-aided drug discovery, our technologies have been extensively used by our peers, as 
summarized in Tables 6 – 8, below. 

 

Core A Software (Table 6) 

Technology Description URL 

Domain-specific Databases/Knowledgebases as National Resources 

CBID A user-friendly web-interfaced cannabinoid molecular information 
database repository64 with the integrated QSAR tools, 
e.g.,Fingerprint-based Artificial Neural Networks QSAR,4 Fragment-
based QSAR,3 PharmShape-based QSAR,89 3D QSAR65 

www.CBLigand.org/CBID 

DAKB Chemogenomics knowledgebase (KB) for drug abuse (DA)14 www.CBLigand.org/DAKB 

http://www.cdarcenter.org/panda/
http://www.cdarcenter.org/panda/
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* Newly launched applications are colored in red, those for download only are colored in green. NA/NC: not applied or not 
counted  
 
 

Core B Software (Table 7) 

AlzPlatform Chemogenomics KB for Alzheimer’s disease2 www.CBLigand.org/AD 

Hallucinogen Chemogenomics KB for Hallucinogen research20 www.CBLigand.org/hallucinogen 

CVD Chemogenomics KB for cardiovascular diseases36 www.cbligand.org/CVD 

TBI Chemogenomics KB for traumatic brain injury46 www.CBLigand.org/TBI  

DLSL Drug-like screening databases for general drug targets55 mulan.pharmacy.pitt.edu/database 

Software & Web-Based Toolkits Accessible Online 

TargetHunter Target/Off-target prediction for a small molecule(s)6 www.CBLigand.org/TargetHunter 

HTDocking High throughput docking for virtual screening2 www.CBLigand.org/HTDocking 

LiCABEDS Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps 
(LiCABEDS), based on machine learning algorithm for compound 
classification prediction5, 76 

www.CBLigand.org/LiCABEDS 

PAINS-
Remover 

A Computer-Aided Drug Design (CADD) tool to identify the false 
positives in experimental high-throughput screening data 

www.CBLigand.org/FPR 

BBB A CADD tool to predict the permeability of a chemical compound 
crossing blood brain barrier 

www.CBligand.org/BBB 

DAKB-GPCRs An online GPCRs chemogenomics knowledgebase for DA research, 
implemented with our established chemogenomics system 
pharmacology (CSP-Target) mapping algorithms/tools for data 
visualization and analyses1 

www.cbligand.org/dakb-gpcrs 

Mol-Prop GPU-accelerated molecular property calculation71 www.CBLigand.org/gpu 

MMFFT A user-friendly web toolkit for generating molecular mechanical 
force field (MMFF) models for arbitrary chemicals 

mulan.pharmacy.pitt.edu/mmfft 

re-Affinity A software tool to re-rank docking poses using the MM-PB/GBSA 
scoring functions52, 74, 80, 83, 90 

mulan.pharmacy.pitt.edu 

Resources Description 
ProDy an open-source Python package for protein structural dynamics;  fast, flexible and powerful file parsers and 

customizable atom-selections for structural analysis. Its capabilities have recently been advanced (see below) 

http://prody.csb.pitt.edu/  

ANM server Analysis and visualization of the equilibrium motions of proteins deposited in the Protein Data Bank (PDB) 

http://anm.csb.pitt.edu/cgi-bin/anm2/anm2.cgi 

coMD 
module  

a hybrid method implemented in ProDy,141 with ANM-predicted collective modes accelerating MD (coMD) 
simulations, extended41 to map the energy landscape of LeuT-fold neurotransmitter transporters 

 

Evol  a new ProDy module for bridging between sequence evolution and structural dynamics 

 

iGNM DB A database that provides access to the dynamics of 95% of structures available in the PDB 

http://ignm.ccbb.pitt.edu/   and http://gnm.csb.pitt.edu/ 

DynOmics a portal to leverage structural proteomics data by evaluating structural dynamics (molecules, complexes and 
assemblies) in the context of their physiological environment (> 6,000 unique users since its inception in 2015) 

 

BalestraWeb Server for searching DrugBank and predicting new drug-target associations 

http://balestra.csb.pitt.edu/ 

ClustENM A new algorithm for ANM-based sampling of essential conformational space at full atomic resolution 

 

SMOKE A statistical model checking tool for estimating unknown parameters of systems biology models 

 

SignDy A novel methodology for determining generic and specific aspects or family and subfamily functional dynamics 

 

Pharmmaker A novel tool for building pharmacophoric models, interoperating with DRUGUI and Pharmit for virtual screening 

 

DruGUI A VMD plugin designed for setup and analysis of simulations containing small organic molecules (probes) for 
druggability assessment  

http://prody.csb.pitt.edu/drugui/ 

Rhapsody pathogenicity prediction of missense variants by taking structural dynamics into considerations (version 1) 

http://rhapsody.csb.pitt.edu/   

http://www.cbligand.org/AD
http://www.cbligand.org/TBI
http://www.cbligand.org/TargetHunter
http://www.cbligand.org/HTDocking
http://www.cbligand.org/LiCABEDS
http://www.cbligand.org/FPR
http://www.cbligand.org/BBB
http://www.cbligand.org/gpu
http://prody.csb.pitt.edu/
http://anm.csb.pitt.edu/cgi-bin/anm2/anm2.cgi
http://ignm.ccbb.pitt.edu/
http://balestra.csb.pitt.edu/
http://www.ks.uiuc.edu/Research/vmd/
http://prody.csb.pitt.edu/drugui/
http://rhapsody.csb.pitt.edu/
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Core C Software (Table 8) 

 
Inventions, Patent Applications, and/or Licenses 

Number of patents:  2 (See the report from each individual core) 
  1 Joint disclosure filed 

 

Data/Resource Sharing Plan 

The University of Pittsburgh has a common policy on intellectual property. The Center and PIs have 
successfully worked and collaborated together for the past five years (the current funding cycle) and 
produced significant progress and achievements. Should IP or other issues become a concern, the 
University has a committee to address such problems.   

We anticipate that our work will result in generation of large, information-rich datasets.  Dissemination 
of findings and sharing of knowledge and copyright protected information will be available through 
the CDAR Network over the Internet.  Established research resources including hardware and 
software will be shared with others who have interests in applying computational technologies 
available to the CDAR Center to their research projects. Computational protocols and data, once they 
are published, will also be shared with other researchers by following the NIH data sharing policy 
(http://grants.nih.gov/grants/policy/data_sharing). In addition, our data/resources sharing plan 
includes:  

i) The sharing of documentation will be done through the CDAR Center web publishing 
mechanism and through the Center web server.  For example, CDAR center will implement, 
establish and maintain new computing Platform for Abused Drugs and Neurological Disorders 
Associated with DA (PANDA) that will facilitate the efficient usage of CDAR data and 
computing resources/protocols by our collaborators and the broader DA research (DAR) 
community. 

 
ii) The new computational algorithms and the data-mining programs will be available for academic 

users under a Materials Transfer Agreement and a data-sharing agreement defined by the 
participating Universities.  

 
iii) New scaffold chemical probes or leads identified for drug abuse and neurological disease 

neurotherapy and associated 3D target protein/enzyme structures, as well as genomics data, 
will be deposited into the CDAR cloud server system and hyperlinked with other online 
databases for public access.  

 

Quartata in silico chemogenomics methodology and server for linking drugs/chemicals, targets, pathways and GO 
annotations 

http://quartata.csb.pitt.edu 

Resources Description 
GenA Map GenAMap: A Visual Analytics Software Platform for eQTL and GWAS Analysis  

https://github.com/blengerich/GenAMap 

Precision 
Lasso 

Precision Lasso: Accounting for Correlations and Linear Dependencies in High-Dimensional Genomic Data.   

https://github.com/HaohanWang/thePrecisionLasso 

CS-LMM Constrained Sparse Linear Mixed Model: Discovering Weaker Genetic Associations with Validated Association  

https://github.com/HaohanWang/CS-LMM 

DMM Deep Mixed Model: Marginal Epistasis Detection and Population Stratification Correction in Genome-Wide 
Association Studies 

https://github.com/HaohanWang/DMM 

MKKC MKKC: An R-package For Multiple Kernel K-means Clustering. 

https://seojinbang.github.io/MKKC/ 

http://grants.nih.gov/grants/policy/data_sharing
http://quartata.csb.pitt.edu/
https://github.com/blengerich/GenAMap
https://github.com/HaohanWang/thePrecisionLasso
https://github.com/HaohanWang/CS-LMM
https://github.com/HaohanWang/DMM
https://seojinbang.github.io/MKKC/
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CORE A 
 
 

COMPUTATIONAL CHEMOGENOMICS FOR DRUG ABUSE (CC4DA) 
 

EXECUTIVE SUMMARY 
 

Xiang-Qun Xie, MD PhD  

 
 
MAJOR GOALS/AIMS OF THE PROJECT  
 

Aim 1: To enable data sharing and processing among scientists in the DA and related scientific 

communities by our established chemogenomics knowledgebase for drug abuse (DA-KB) 
  

Aim 2: To integrate and further advance our algorithms/tools for predicting DA targets, pathways, 
underlying mechanisms and potential polypharmacological effects relevant to polydrug addiction and 
DAR  
 

Aim 3: To implement cloud sourcing and computing services to facilitate and accelerate 
computational chemogenomics studies as well as in silico medication design and discovery for DA 
therapeutics 
 
 

ACCOMPLISHMENTS 
In the first funding term (8/1/2014 – 7/31/2019, currently in NCE), Core A team has worked closely with 
Cores B and C, as well as the FRP and P/FP PIs, and made significant achievements towards the 
proposed research aims listed above. The major achievements for Core A in the first term include: (i) 58 
peer-reviewed publications with 25 directly related to DA and 16 related to DA-associated health issues 
or DA-associated NDs, 23 of which were published after Oct. 2018, and most (34 papers) were achieved 
through collaborations; (ii) construction of 8 DA/ND-related databases; (iii) development and advancement 
of 15 innovative computational tools with online accessibility; (iv) support of 10 NIH-funded research 
projects (FRPs) and 3 pilot/feasibility projects (P/FPs) by Core A (http://www.cdarcenter.org); and (v) 
development of a new course, Pharmacometrics & Systems Pharmacology (PSP), for training the next 
generation of DA researchers (currently 5 PhD and 9 MS students) and organization of 2 training 
workshops. 
 
The following is the summary of Core Technology Innovation and Research Accomplishments 

http://www.cdarcenter.org/
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1. Chemogenomics databases. We have constructed a set 

of DA-KB and implemented them to the PANDA platform to 
promote data-sharing and facilitate DA drug target/off target 
identification and systems pharmacology research for DAR 
community. 
A. Highlights of research accomplishments 

• We have Constructed domain-specific knowledge 
databases for drug abuse,1-2 hallucinogens,3 
Alzheimer’s disease,4 cardiovascular disease5, and 
stem cells.6  

 
B. Representative Research Project 
Abstract. To further improve data integration and methods 
development, we are in development of an integrated 
computer platform-PANDA (www.cbligand.org/panda) by 
enriching and centralizing drugs/chemicals data, protein 
targets, gene expression, metabolism and bioactivity data 
related to both DA and ND targets (Figure 1). The platform’s 
features include cloud computing and sourcing services with 
integration of our published/established and to-be-
developed tools for DA target identification, drug 
repurposing, and polypharmacology analysis1, 3-5, 7-9. 

 
Broader Impact of this research on DAR. The in-development PANDA will enhance data sharing, 
dissemination, and knowledge creation, as well as to boost synergies among the broader DAR community. 

 
2. GPU-accelerated platform/algorithms/tools for drug target identification for DAR and NDR  

A. Highlights of research accomplishments 

• Developed a new platform DAKB-GPCRs:2 an Integrated computational platform for drug abuse 
related GPCRs. 

• Developed AMBER-based scoring functions for abuse drug-target interactions (ADTI) modeling in 
DAR10 

• Applied chemogenomics DBs and computing tools to understand the underlying mechanisms and 
potential abuse effects of Captagon11 

 
B. Representative Research Project 1: DAKB-GPCRs:2 an Integrated computational platform for drug 

abuse related GPCRs. 
Abstract. Drug abuse (DA) or drug addiction 
is a complicated brain disorder which is 
commonly considered as neurobiological 
impairments caused by both genetic factors 
and environmental effects. Among DA-
related targets, G protein-coupled receptors 
(GPCRs) play an important role in DA 
therapy. However, only 39 GPCRs have 
been published with crystal structures in the 
recent two decades. In the effort to 
overcome the limitation of crystal structure 
and conformational diversity of GPCRs, we 
built homology models and performed 
conformational searches by molecular 
dynamics (MD) simulation. To accelerate and facilitate the drug abuse research, we construct a 
GPCRs-specific chemogenomics knowledgebase for DA research (DAKB-GPCRs) that implemented 
with our established and novel chemogenomics tools as well as algorithms for data analyses and 
visualization. Our established TargetHunter and HTDocking,2 as well as our novel tools that include 
target classification and Spider Plot are compiled into the platform as illustrated in Figure 2. Our 

Figure 1. The proposed Platform of Abused- 
Drugs and Neurological Diseases 
Association (PANDA) will integrate both 
established and new chemogenomics tools and 
databases for drug abuse-related disease 
research. 

Figure 2. The workflow of DAKB-GPCRs.  



59 

 
DAKB-GPCRs provides the following results for a query compound: (1) blood-brain barrier (BBB) plot 
via our BBB predictor, (2) docking scores via our HTDocking, (3) similarity score via our TargetHunter,9 
(4) target classification via machine learning methods that utilizes both docking scores and similarity 
score, and (5) drug-targets interaction network via our Spider Plot. 

 
Broader Impact of this research on DAR. To our knowledge, no such domain-specific database is 
available for the proposed computational applications. Our platform is the first web-based service that 
integrates DA-related genes, proteins, and drugs for DA research. State-of-the-art computational 
chemistry/chemoinformatics and machine learning algorithms established in our lab have been 
implemented for this chemogenomics database, which will help characterize the features of genes, 
proteins, and drugs in DA study. It will also facilitate new information exchange and data-sharing of 
knowledge among relevant scientific communities. 

 
C. Representative Research Project 2: Application of physics-based scoring function in binding free 

energy calculations. 
Abstract. By taking advantage of ever-
increasing computer power, Core A 
has developed a successful target-
ligand binding free energy calculation 
depending on both the proper 
conformational sampling and accuracy 
of the employed molecular mechanical 
force field (MMFF) model12-15. The 
MMFF-based free energy calculation is 
more accurate than the efficient 
docking scoring functions because of 
its rigorous theoretic framework which 
also takes the flexibility of receptors 
into consideration. MM-PB/GBSA16-20, 
linear interaction modeling (LIE)21 and 
thermodynamic integration (TI)22 are at 
present widely used MMFF-based 
methods. Figure 3 illustrates how 
those methods will be applied in our 
strategies of abused drug-target 
interaction (ADTI) prediction and 
rational drug design. It is encouraging 
that AMBER GPU-TI with a general AMBER force field (GAFF)23 has achieved a better performance 
than FEP+,24 a commercially available, and costly, software, in reproducing the relative binding free 
energies for all the four considered protein systems25-28  as shown in Figure 3C. In this renewal, Core 
A will advance, re-AFFINITY, a software package which bridges the gap between docking-based and 
rigorous MMFF-based scoring functions.10 Moreover, we have successfully expanded the LIE model 
to ELIE (Extended Linear Interaction Energy), by including the polar and nonpolar parts of solvation 
energies and the entropy term into the parameter search procedures. We plan to develop a set of 
ELIE models for the abused drug targets.10 re-AFFINITY and ELIE models will be used to re-rank 
docking poses in the 3rd Step 

 
Broader Impact of this research on DAR. Accurate evaluation of a scoring function helps assess 
the binding free energy and predict the highest-affinity pose of a ligand binding to its target, which is 
one of the most important challenges in structure-based drug design for DAR. The developed AMBER 
FF-based methods have dramatically improved the state-of-the-art in drug discovery targeting drug 
abuse and neurological disorders.    

 
3. Machine learning (ML) based algorithms and computer models for DAR and NDR 

A.   Highlights of research accomplishments 

Figure 3. Abused drug-target interaction (ADTI) prediction 
and rational drug strategy with AMBER-based scoring 
functions. (A) Lead identification and optimization strategies; (B) 
fast screening methods, (C) Comparison of relative binding free 
energy calculations (kcal/mol) between FEP+ of Schrodinger and 
AMBER-GPU TI. MUE and RMSE stands for mean unsigned 
error and root-mean-square error, respectively. 
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• Developed “CSP-Target Mapping”,29 a new GPU-accelerated machine/deep learning-based 
algorithm tool for target prediction, classification, and mapping, by integration of TargetHunter9 
and HTDocking4 algorithms 

• Constructed a set of ML-based predictive models using the behavioral and psychological 
descriptors collected by CEDAR30-31 

• Predicted orthosteric and allosteric regulations on Cannabinoid receptors using supervised 
machine learning classifiers32  

B.  Representative Research Project: Computational Systems Pharmacology-Target Mapping for 
Fentanyl-laced Cocaine Overdose 
Abstract. The United States of America is fighting against one of its worst-ever drug crises. Over 900 
people a week die from opioid/heroin-
related overdoses while millions more 
suffer from opioid prescription 
addiction. Recently, drug overdoses 
caused by the fentanyl-laced cocaine 
specifically are on the rise. Due to drug 
synergy and an increase in side 
effects, polydrug addiction can cause 
more risk than a single drug. In our 
recent work, we systematically 
analyzed the overdose/addiction 
mechanism of cocaine and fentanyl. 
Firstly, we applied our established 
chemogenomics knowledgebase and 
machine-learning-based methods to 
map out the potential/known proteins, 
transporters, metabolic enzymes, and 
the potential therapeutic target(s) for 
cocaine and fentanyl. Sequentially, we 
looked insight into the detail of (1) the 
addiction to cocaine and fentanyl by 
binding to the dopamine transporter 
and the µ opioid receptor (DAT/ µOR); 
(2) the potential drug-drug interaction 
of cocaine and fentanyl via p-glycoprotein (P-gp) efflux; (3) the metabolism of cocaine and fentanyl 
in CYP3A4; (4) the PBPK model for two drugs and their drug-drug interaction in ADME level. Finally, 
we looked into the detail of JWH133, an agonist of cannabinoid 2-receptor (CB2) with potential 
therapy for cocaine and fentanyl overdose. All these results provide insight into a better 
understanding of fentanyl and cocaine polydrug addiction and future drug abuse prevention. Figure 
4 illustrates the complex drug-drug target interactions involved by cocaine and fentanyl.   

 
Broader Impact of this research on DAR. Fentanyl is one of the most potent opioid substance, has 
been found to be used as an additive to recreational drugs such as cocaine and heroin to increase 
their hallucinogen effect in recent years. This phenomenon poses a serious problem on top of the 
opioid epidemic since the use of only a small amount of fentanyl is required to cause detrimental 
symptoms such as respiratory depression. In addition, the concordant use of fentanyl and other 
substance can potentially increase the risk of overdose and other adverse events. Our studies 
provided detailed information for fentanyl-cocaine polyaddiction from PK and PD aspects. We also 
suggest CB2 compounds such as JWH133 may have the potential therapeutic effect for both cocaine 
and fentanyl. 

 
4. Application of molecular systems pharmacology to understand clinical outcomes 

A.  Highlights of research accomplishments 

• Constructed a set of ML-based predictive models using behavioral and psychological descriptors 
for DA prevention in collaboration with R. Tarter, Director of CEDAR30-31 (CEDAR center was 
funded by NIDA) 

Figure 4. Computational systems pharmacology-target 
mapping for target proteins, transporters, metabolic enzymes 
and potential therapeutic targets of cocaine and fentanyl. The 
green circles and solid lines represented the known targets and 
interaction for the drugs, while the purple circles and dash lines 
represented the predicted targets and interaction. In addition, the 
red circle and solid line represented the known therapeutic target 
and reported therapeutic effect, while the red dash line 
represented the predicted therapeutic effect. 
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• Studied the pharmacokinetic and pharmacodynamic drug-drug interactions between opioids and 
benzodiazepines in order to interpret and understand prescription opioid medication overdose 
issues33-34 

• Clinical data mining outcomes analysis and system pharmacology studied synergistic effects of 
anti-hypertensive drugs and cholinesterase inhibitors on cognitive decline in Alzheimer’s patients35  

• Investigated drug synergy mechanisms of an herbal formula for cardiovascular disease,5 
Conducted systems pharmacology analysis on aspirin/cilostazol to study their therapeutic effects 
on cardiovascular disease36 (*cardiotoxicity is one of the issues associated with drug abuse and 
overdose) 

 
B.  Representative Research Project 1: Development of predictive model using behavioral and  
     psychological descriptors for DA prevention 

Abstract. We have applied various ML algorithms to analyze DA patient clinical data and also 
combined systems pharmacology studies to better interpretate outcomes at the molecular level. In 
collaboration with Dr. Ralph Tarter (Director of the former NIDA-supported Center for Education and 
Drug Abuse Research (CEDAR) at the University of Pittsburgh), we performed data-mining on 
substance use disorder (SUD) data collected by CEDAR37. The human subjects of this work 
participated in a longitudinal research study with the funding support from NIH NIDA and conducted by 
CEDAR on examining the etiology of SUD in families. First, we have successfully defined the clinical 
outcomes of substance abuse through trajectory analysis of the longitudinal total harm scores, showing 
that the subjects were classified into either high-risk (HR) or low-risk (LR) groups (Figure 5A). Clearly, 
there is a significant correlation between the trajectory analysis-based substance abuse risks, and the 
SUD and DUD clinical diagnoses (Figure 5B). From hundreds of etiological variables, 30 were selected 
by a random forest (RF) algorithm to construct a variety of classification models using different machine 
learning algorithms (Figure 5C). Random forest and Naïve Bayes are the 2 most promising ML 
methods for building classification models with satisfactory predictive power. For the classifier based 
on the first-visit data, the area under the curve of receiver operating characteristic (ROC) analysis is 
0.71. Although this performance is inferior to those of the classifiers constructed using data of the follow-
up visits, it has greater potential since substance abuse prevention measures will be taken when 
subjects are only at ages of 10 and 11. Two manuscripts were recently accepted for publication in Drug 
and Alcohol Dependence.30-31 
 
Broader Impact of this research on DAR. Those models could make significant contributions to DA 
prognostication and treatment. For example, we have carried out preliminary studies of a set of 
classifiers to predict the DA risk group (high or low) to which a subject belongs to, using data obtained 
in their adolescence (even as young as 10 or 11 years old) through early adulthood with very 
satisfactory prediction performance. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Data-mining of CEDAR-collected human drug abuse (DA) data with multiple ML 
algorithms. (A) Definition of substance use disorder (SUD) risk through trajectory analysis. Two 
risk groups are defined: high-risk (HR, in red) and low-risk (LR, in blue); (B) Summary of correlation 
between trajectory analysis-based risk classification and clinical diagnoses of substance use 
disorders. 
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C. Representative Research Project 2: Drug-drug interaction studies for abused drugs co- 
    administered with benzodiazepines  

Abstract. Core A has studied the 
possible interactions between 
benzodiazepines (such as diazepam-
DZP, alprazolam-APZ) and opioids 
(oxycodone-OXY and fentanyl- FEN) 
through data mining of the FDA 
Adverse Event Reporting System 
(FAERS) and other databases, PBPK 
modeling, and off-target prediction. 
Pharmacokinetic drug-drug 
interactions (PK-DDIs) occur when 
two administered drugs are 
metabolized by the same enzymes or 
interact with the same transporters. 
Our PBPK modeling and 
simulations33-34 suggest that OXY and 
DZP have an interaction only when 
DZP is overdosed (Figures 6A, 6B). 
On the other hand, the PK-DDI is 
much more obvious between FEN 
and APZ (Figures 6C, 6D). This result 
is consistent with a recent report on the antinociceptive tolerance of OXY induced by DZP38. To elucidate 
the mechanism of the DDI between OXY and DZP, we performed CSP-Target studies of DTIs for two 
drugs using HTDocking. We found that there is an obvious off-target effect for DZP with it acting as an 

agonist for both µ39 and -opioid40 receptors, since DZP, OXY, and the known agonists of µ and -opioid 
receptors have comparable docking scores.  

 
Broader Impact of this research on DAR. The PK parameters and covariates identified during 
population PK/PD analysis will be used to achieve precision medicine of DA treatment for individual 
patients.   

 
5. Synergy among the Cores and collaboration with FRPs and P/FPs on DAR and NDR  

A. Highlights of research accomplishments 

• Collaborated with Dr. Bahar (Core B) to support Dr. Yong Wan (Northwestern University) to 
discover novel small molecules for KELF4-PRMT5 with potential therapeutic effects for cancer 
and neuro-disorders.  

• Collaborated with Dr. Wu (Core C) for predicting compounds with potential therapy for drug 
abuse41 

• Collaborated with former FRP (Y Liu) for discovering novel CB2 inverse agonist for treating kidney 
fibrosis;35 and FRP (O Lopez) on the Alzheimer’s clinical data analysis35 

• Supported P/FP PI (I Hernandez) to successfully apply for fellowship and K01 grant 

(1K01HL142847)  

• Supported former P/FP PI (M Torregrossa) to successfully apply for her R01 grant 
(5R01DA042029) 

 

B. Representative Research Project: A computational strategy for finding novel targets and  
     therapeutic compounds for opioid dependence41  

Abstract. Opioids are widely used for treating different types of pains, but overuse and abuse of 
prescription opioids have led to opioid epidemic in the United States. Besides analgesic effects, chronic 
use of opioid can also cause tolerance, dependence, and even addiction. Effective treatment of opioid 
addiction remains a big challenge today. Studies on addictive effects of opioids focus on striatum, a 
main component in the brain responsible for drug dependence and addiction. Some transcription 

Figure 6. Drug-drug interaction between opioids and 
benzodiazepines, which is measured by the difference of the AUC of 
the solid line (opioid only) and dashed-line (co-administrated with a 
benzodiazepine). (A) 40 mg OXY / 100 mg DZP, (B) 40 mg OXY / 500 mg 
DZP, (C) 0.1mg/kg FEN / 10 mg APZ, (D) 0.1 mg/kg FEN / 500 mg APZ  
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regulators have been associated with opioid addiction, but relationship between analgesic effects of 
opioids and dependence behaviors mediated by them at the molecular level has not been thoroughly 
investigated. In this paper, we developed a new computational strategy that identifies novel targets and 
potential therapeutic molecular compounds for opioid dependence and addiction in collaboration with 
Core C. We employed several statistical and machine learning techniques and identified differentially 
expressed genes over time which were associated with dependence-related behaviors after exposure 
to either morphine or heroin, as well as potential transcription regulators that regulate these genes, 
using time course gene expression data from mouse striatum. Moreover, our findings revealed that 
some of these dependence-associated genes and transcription regulators are known to play key roles 
in opioid-mediated analgesia and tolerance, suggesting that an intricate relationship between opioid-
induce pain-related pathways and dependence may develop at an early stage during opioid exposure. 
Finally, we determined small compounds that can potentially target the dependence-associated genes 
and transcription regulators. These compounds may facilitate development of effective therapy for 
opioid dependence and addiction. We also built a database (http://daportals.org) for all opioid-induced 
dependence-associated genes and transcription regulators that we discovered, as well as the small 
compounds that target those genes and transcription regulators.  

 
Broader Impact of this research on DAR. In summary, our work here intent to elucidate molecular 
connections between the analgesic and tolerance-related pain pathways and harmful side effects of 
opioid use during pain treatment. Despite the general belief that morphine is safe for managing patients 
with pain, our results suggest that morphine may induce tolerance to analgesia and dependence on 
the drug in the patients in the very early stage, which may increase the possibility of the same patients 
to abuse heroin thereafter, since heroin may further induce acute analgesic effects as suggested by 
our results. Moreover, because heroin can cause both structural and behavioral changes among 
patients, abusing heroin after morphine may lead to more potent dependence on the drugs among the 
patients. 

 
OPPORTUNITIES FOR TRAINING AND PROFESSIONAL DEVELOPMENT  
 
Courses Taught by Core A Researchers. The PI Xie and co-investigators participated in teaching 
the following courses (Total Lecture hours: 50 hrs):  

(1) Drug Discovery, Design & Development Journal Club (Pharm3048, Course Coordinator, 21 
hours course time) 2018 Spring. 

(2) Advanced Medicinal Chemistry (Pharm3032) (3 credits) lectured 8 hours + 2 hrs practice + 4 
hrs practice planned on Computational Medicinal Chemistry, 2018/2019 Fall. 

(3) Foundations in Pharmaceutical Sciences (Pharm3023) (5 credits) as a course co-coordinator 
(Part II. Drug Discovery and Design) and lectured 6 hours + 2 hrs practice + 4 hrs practice planned 
on computer-aided drug design, 2019 Spring. 

(4) Pharmaceutical Analysis (PHARM2100, 3 credits), taught 14 hrs lectures + 2 hrs practice + 4 
hrs practice planned on NMR application in pharmaceutical sciences, 2019 Spring.  

(5) Computational Systems Pharmacology (Pharm 3068, 3 credits, a newly developed core course 
for the PSP program), 2018 fall. 

(6) Pharmacometrics (Pharm 3069, 3 credit, a newly developed core course for the PSP program), 
2019, fall.   
 

Grad students mentoring and research guidance 
(1) Dr. Yuanqiang Huang (Visiting Professor from China) 
(2) Dr. Jin Cheng (Visiting Professor from China)  
(3) Yan Chen (Visiting Professor from China)  
(4) Ying Xue (Visiting Professor from China)) 
(5) Shunqing Xu (Visiting Professor from China) 
(6) Weiwei Lin (PharmD student) 
(7) Shifan Ma (PhD student) 
(8) Ziheng Hu (PhD student) 
(9) Changrui Xing (PhD student) 
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(10) Yankang Jing (PhD student) 
(11) Yuemin Bian (PhD student) 
(12) Peihao Fan (PhD student) 
(13) Jacob Cuyler (PhD student) 
(14) Nan Wu (MS student) 
(15) Siyi Wang (MS student) 
(16) Tianjian Lian (MS student) 
(17) Xiguang Qi (MS student) 
(18) Yuanyuan Xu (MS student) 
(19) Mingzhe Shen (MS student) 
(20) Beihong Ji (PhD student) 
(21) Shuhan Liu (MS student) 
(22) Jingchen Zhai (MS student) 
(23) Yuzhao Zhang (MS student) 
(24) Dongxiao Hao (Exchange student from China) 
(25) Matthew Brock (PharmD student) 

 

Undergraduate students (University of Pittsburgh): 
(1) Jack Zhao (Case Western Reserve University, 2018) 
(2) Ashna Gupta (Biology) 
(3) Emma J Palumbo (Molecular Biology; Genetics) 
(4) Erika Thomas (Biological Sciences, Computer Science)  
(5) Zechen Wang (Visiting student from Sun Yat-san University, China) 

 

RESULTS DISSEMINATED TO COMMUNITIES OF INTEREST  

Publications: During the past year, Core A has published 23 papers in peer-reviewed journals and 13 
of them are directly related to DAR (see Products section, below). 

Center Programs: Core A has participated in interactive educational enrichment programs supported 
by the Center. They are briefly described below. Detailed information can be found in the Admin Core 
Section. 

(1) CDAR Annual meeting 
(2) Journal Clubs 
(3) Joint Lab Meetings 
(4) PK/PD modeling software learning clubs 
(5) Fellows Training Course/Workshop 
(6) CMU/Pitt Educational Opportunities (including Pharmacometrics course) 

 

Scholarly activity (Core A PI Dr. Xiang-Qun Xie) 
(1) Charter Member of Science Board to the US FDA Advisory Committee, the United States, the 

Food and Drug Administration (FDA)  (2014-2018) 
(2) Editorial Advisory Board Member of American Association of Pharmaceutical Scientists (AAPS) 

Journal 2015-present) 

 Invited Talks (Core A PI Xiang-Qun Xie and Other Co-Is) 
(1) (Invited speaker) Xie, XQ, 2018 Nov 19 “Pharmacometrics & System Pharmacology (PSP) Program 

for Drug Discovery”, Macau University of Science and Technology (MUST;澳門科技大學), China. 

(2) (Invited speaker) Xie, XQ, 2018 Nov 1-3 “GPCRs-KB. An Integrated Platform of GPCRs 
Computational Chemogenomics KnowledgeBase for System Pharmacology Drug Discovery” in 
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2018 International Conference of Frontiers in Precision & Translational Medicine (PTMC2018)”, 
Peking University Health Science Center, Beijing, China. 

(3) (Invited speaker) Xie, XQ, 2018 Nov 12 “GPCRs-Drug Abuse. An Integrated Platform of GPCRs 
Computational Chemogenomics KnowledgeBase for System Pharmacology Drug Discovery” SYSU, 
Guangzhou, China  

(4) (Invited speaker) Yuemin Bian XiangQun Xie “Chemogenomics-knowledge based systems 
pharmacology analysis and integrated in silico simulation on cannabidiol (CBD)” Chemistry & 
Pharmacology of Drug Abuse, Boston, United States, 2018. 

(5) (Invited speaker) Junmei Wang, “Update on GAFF/Antechamber Development” AMBER 
Developers’ Meeting, Tampa, FL, 2019 March 

(6) (Invited speaker) Xibing He, “GAFF3 – the Next Generation of AMBER All-Atom Force Fields” 
AMBER Developers’ Meeting, Tampa, FL, 2019 March 

(7) (Invited speaker) Viet Man, “Nonequilibrium MD simulations with laser and bubbles”, AMBER 
Developers’ Meeting, Tampa, FL, 2019 March 

(8) Junmei Wang, “Rational design of small molecules inhibiting Amyloid Beta aggregation” ACS 
Meeting, Orlando FL, March 31- April 4, 2019 

(9) (Invited speaker) Junmei Wang, International symposium of “Free energy calculations: entering the 
fourth decade of adventure in chemistry and biophysics”, Santa Fe NM, June 16-21, 2019.  

(10) Peihao Fan, Nanyi Wang, Lirong Wang, Xiang-Qun Xie “Computational Approach for Autophagy 
and Apoptosis Specific Knowledgebases and Chemogenomics Systems Pharmacology Drug 
Research” in 27th AAPS Conference. 

Conference Posters (Xie’s Core A):  
(1) S. Ma, L. Wang, J. J. Jun, X-Q. Xie.* A Comprehensive Gene Signature Analysis for Multiple 

Myeloma. UPITT Science Conference 2019, Pittsburgh, PA, United States. 
(2) Yuemin Bian, X-Q Xie  “The effects and mechanism of α-mangostinderivatives on the Alzheimer’s 

disease model of rat: a combination of experimental study and computational systems 
pharmacology analysis” UPITT Science Conference 2018, Pittsburgh, United States, 2018.  

(3) Ji, B. “Mechanism of drug-drug interaction between Opioids and Benzodiazepines”, Pitt-Pharmacy 
Graduate Program Poster Presentation and Awards Dinner, Oct., 9, 2018 

(4) Ji, B. “Mechanism of drug-drug interaction between Opioids and Benzodiazepines”, UPITT Science 
Conference 2018, Oct. 18, 2018 

(5) Fan, P. “Computational Approach for autophagy and apoptosis specific knowledgebases and 
chemogenomics systems pharmacology drug research”, UPITT Science Conference 2018, Oct. 18, 
2018 

(6) Shifan Ma, LiRong Wang, Xiaang-Qun Xie. "A meta-analysis comparing multiple myeloma gene 
signatures and gene or chemical perturbation induced gene profiles" UPitt SOP Graduate Student 
& Post Doc Retreat and Awards Dinner, Seven Springs, PA, June 20, 2019 

(7) Changrui Xing, Youwen Zhuang, Cheng Zhang, Eric Xu, Xiang-Qun Xie. “Cannabinoid Receptor 
CB2 Structure and CB2/Gi Signaling Mechanisms.” UPitt SOP Graduate Student & Post 
Doc Retreat and Awards Dinner, Seven Springs, PA, June 20, 2019 

(8) Peihao Fan, Nanyi Wang, LiRong Wang, Xiang-Qun Xie. “Computational Approach for Autophagy 
And Apoptosis Specific Knowledgebases and Chemogenomics Systems Pharmacology Drug 
Research.” UPitt SOP Graduate Student & Post Doc Retreat and Awards Dinner, Seven Springs, 
PA, June 20, 2019 

(9) Yuemin Bian, Xibing He, Lirong Wang, Junmei Wang, Xiang-Qun Xie. “Computational systems 
pharmacology analysis of cannabidiol: a combination of chemogenomics knowledgebase network 
analysis and integrated in silico modeling and simulation.” UPitt SOP Graduate Student & Post 
Doc Retreat and Awards Dinner, Seven Springs, PA, June 20, 2019 

(10) Siyi Wang, Jin Cheng, Weiwei Lin, Nan Wu, Yuanqiang Wang, Maozi Chen, Xiang-Qun (Sean) 
Xie, and Zhiwei Feng. “Computational System Pharmacology-Target Mapping (CSP- Target 
Mapping) For Fentanyl-laced Cocaine Overdose.” UPitt SOP Graduate Student & Post 
Doc Retreat and Awards Dinner, Seven Springs, PA, June 20, 2019 

(11) Viet H. Man. “Promising applications of ultrasound and infrared laser on brain therapies: a 
theoretical study.” UPitt SOP Graduate Student & Post Doc Retreat and Awards Dinner, Seven 
Springs, PA, June 20, 2019 
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(12) Shuhan Liu, Xibing He, Viet Hoang Man, Beihong Ji, Junmei Wang. “New Application of In Silico 

Methods in Identifying Key Components of Anti-Cancer Herbal Formulation YIV-906.” UPitt SOP 
Graduate Student & Post Doc Retreat and Awards Dinner, Seven Springs, PA, June 20, 2019 

(13) Beihong Ji, Ying Xue, Yuanyuan Xu, Zhaojia Zhang, Shuhan Liu, Albert H Gough, Junmei Wang*, 
Lirong Wang*, Xiang-Qun Xie. (Presented by Mingzhe Shen) “Physiologically-based 
Pharmacokinetics Modeling of Drug-Drug Interaction between Oxycodone and Diazepam.” UPitt 
SOP Graduate Student & Post Doc Retreat and Awards Dinner, Seven Springs, PA, June 20, 2019 

(14) Xibing He, Junmei Wang. “Protocols of Calculating Protein-Ligand Binding Free Energies Using 
AMBER Programs and Force Fields.” UPitt SOP Graduate Student & Post Doc Retreat and Awards 
Dinner, Seven Springs, PA, June 20, 2019 

 

Support of New Funding Efforts of PIs for FRPs (Core A PI Xiang-Qun Xie) 
The following grant applications were provided joint efforts or collaboration efforts by Core A and team. 
 

Funded 
• P30 DA035778 (Director: Xie)  09/01/2014-08/31/2019 (1 Year No Cost Extension)  

09/01/2020-08/31/2025 (Renewal Pending)  
NIDA Center of Excellence of Computational Drug Abuse Research (CDAR), NIH. 
The overall goal of the Computational Drug Abuse Research (CDAR) Center is to advance state of-
the art computational technologies for research toward the prevention and treatment of drug abuse 
(DA) and DA-related diseases. 

 

• DOD W81XWH-16-1-049 (Xie)  09/01/2016-08/30/19 (1 Year No Cost Extension) 
Chemogenomics Systems Pharmacology Approach for TBI and AD Research 

Alzheimer’s disease (AD) is the most common form of dementia. It is a condition associated with 
memory loss (particularly episodic memory), a slow decline in cognitive ability, and behavioral and 
physical disability, ultimately resulting in death. Military personnel and other individuals who suffer 
from traumatic brain injury (TBI) face an increased risk for developing several long-term health 
problems including AD-like dementia, aggression, memory loss, depression, and symptoms similar 
to those of AD.  We have already obtained significant results through application of computational 
approaches and have published these findings (J Neurotrauma 2018 Sep 6. doi: 
10.1089/neu.2018.5757). We are now preparing to perform animal studies and clinical data analysis 
to find the mechanisms that cause TBI-induced AD.  This funded proposal represents a strong 
collaboration between Core A (Xie) and Dr. Oscar Lopez and Dr. Dandan Sun. 

 

• NIH R01 (Xie and L Wang) 
Personalized Medicine for Alzheimer’s Disease with Common Comorbidities. 
PI: Dr. Xiang-Qun Xie  
Co-PI: Dr Lirong Wang, Dr. Oscar Lopez  
Co-I: Dr. Gregory Cooper 
Initially Submitted: June 5, 2018 

 

• 3R01MH113857 - 02W1 (Price, Rebecca)  12/01/18-06/30/22  0.7 calendar 
NIH/NIMH      $46,648 
Improving Precision of Ketamine Metabolite Assays 
Role: Pharmacokinetics Expert (Junmei Wang) 
This project seeks to identify the neural and cognitive changes that accompany rapid relief from 
depressive symptoms following intravenous ketamine.  

 

• QUMP /5UL1TR001857 (Junmei Wang)              02/01/2019 – 01/31/2020 
PITT CTSI/NIH     $10,000 
Quantitatively predict drug-drug interactions between oxycodone and other drugs  
Role: Principal Investigator 

• NIH 1R01MH116046-01A1 (PIs: Sweet, Kofler and Wang L)  09/25/2018-06/30/2023 
Synaptic Resilience to Psychosis in Alzheimer Disease 
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Pending 
• Thome Memorial Foundation Awards Program in Alzheimer’s Disease Drug Discovery 

Research (Xie)  02/1/2020-01/31/2022 

“Novel SQSTM-1/p62 modulators for the treatment of Alzheimer’s Disease”  

Funds Requested: $500,000 

Co-Is: Terence McGuire, Jaden Jun, and Zhiwei Feng 

Full Proposal Submitted: September 9, 2019 

 

• Proposal #7910508 (Wang, JM) 04/01/2019-03/31/2022  

National Science Foundation              $947,245  

“Molecular Mechanics force field toolkit for studying protein-ligand interactions” 
 

• NIH R01 (Xie) 
“CB2 Structure and CB2/Gi signaling mechanisms: Insight into New CB2 Drug Discovery” 
Date Submitted: October 5, 2019       

 

• NIH R01 (Xie) 
“INK4C-Targeted Small-Molecule Inhibitors” 
Co-Is: Dr. Jaden Jun, Dr. Terence McGuire, Dr. Zhiwei Feng 
Date Submitted: October 5, 2019        

 

• NASA Space CASIS (The Center for the Advancement of Science in Space) (Xie) 

“Crystalization of CB2” 
Funds Requested: $70,000 
Submitted: May, 2018 

 Status: Funding appears to have been approved and we are actively engaged in planning the 
microgravity experiment for the rocket launch in spring of 2020. 

  

PLAN FOR NEXT PERIOD  

We will continue to improve our existing programs and develop new computational chemogenomics 
databases and tools (Aims 1 and 2), and to develop computational models to predict DA clinical 
outcomes (Aim 3). The new DBs, computational tools and models will be applied to the research of 
our selected FRPs and pilot projects that are on-going collaborations. We will focus on (but not limited 
to) the defined plans below:  
   
1. To construct a new Platform for Abused-Drugs and Neurological Diseases Association 

(PANDA). We will enhance data sharing, dissemination, and KB creation as well as boost synergies 
among the broader DAR community by integrating the chemogenomics KBs of abused drugs with the 
metabolism pathway/genetic information of DA-associated diseases. We will build the integrated 
PANDA system to centralize all DA data and tools from all research Cores. Core A will make data 
accessible through PANDA on: (1) Chemogenomics of DA and NDs-related targets and compounds 
jointly with Computational and Systems Biology Core for DA (Core B);1, 5, 9 (2) gene expression 
induced by drugs of abuse in cooperation with the Computational Genomics for DA (Core C); and (3) 
metabolism information on drug-drug interactions (DDI) related to DA. We will improve our existing 
webtools (www.cbligand.org/cdar) by implementing a user-friendly interface and GPU high-
performance computations.  
 

2. To advance our computing algorithms/tools for modeling abused drugs and DA targets 
interactions (DTI) and to predict DA treatments against polyaddiction by deep/machine 
learning (DL/ML) methods. We will focus on: (1) advancing our novel chemogenomics systems 
pharmacology (CSP)-Target Mapping program, a new GPU-accelerated ML/DL computing algorithm8, 

http://www.cdarcenter.org/PANDA/
http://www.cbligand.org/cdar
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30-32, 42-44 to map out DA targets related to cell signaling by integration of TargetHunter61 and 
HTDocking34 in synergy with Core C; (2) modeling the energetics of DA drug-target interactions using 
the AMBER force field-based scoring functions (AMBER-FFSF)19, 23, 45 to be used in conjunction with 
the DruGUI software46 (for druggability simulations) developed by Core B; (3) developing a novel 
scoring-function methodology for characterizing DA drug/targets complexes, called molecular complex 
characterizing system (MCCS); and (4) applying these tools to predict DTIs and to discover novel 
small-molecules for DA/ND targets.1, 47-49  
 

3. To advance our developed ML-based models to predict DA clinical outcomes in combination 
with systems pharmacology method for assisting in DA prevention. To achieve this goal, we will 
focus on: (1) analyzing the clinical data of juveniles, for example, those collected by the Center for 
Education and Drug Abuse Research (CEDAR), using our established cutting-edge ML/DL computing 
tools;7-8, 44, 49-51 (2) applying both the clinical data-mining and computational systems pharmacology 
tools to model and predict DDIs and DTIs for understanding the molecular basis of DA-related clinical 
outcomes; and (3) utilizing physiology-based pharmacokinetics (PBPK) modeling and 
pharmacometrics approaches to quantitatively study DDIs and the underlying mechanisms from the 
perspectives of drug metabolism and drug synergism. 

PRODUCTS 

Publications:  
1. Chen, M.; Jing, Y.; Wang, L.; Feng, Z.; Xie, X. Q., DAKB-GPCRs: An Integrated Computational 

Platform for Drug Abuse Related GPCRs. Journal of chemical information and modeling 2019, 59 
(4), 1283-1289. 

2. Jing, Y.; Hu, Z.; Fan, P.; Xue, Y.; Wang, L.; Tarter, R.; Kirisci, L.; Vanyukov, M. M.; Wang, J.; Xie, 
X.-Q., Analysis of substance use and its outcomes by machine learning I. Childhood evaluation of 
liability to substance use disorder. Drug And Alcohol Depend 2019, In Press. 

3. Hu, Z.; Jing, Y.; Xue, Y.; Fan, P.; Wang, L.; Tarter, R.; Kirisci, L.; Vanyukov, M. M.; Wang, J.; Xie, 
X. Q., Analysis of substance use and its outcomes by machine learning: II. Derivation and prediction 
of the trajectory of substance use severity. Drug and Alcohol Dependence 2019, In press. 

4. Cheng, J.; Wang, S.; Lin, W.; Wu, N.; Wang, Y.; Chen, M.; Xie, X. Q.; Feng, Z., Computational 
Systems Pharmacology-Target Mapping for Fentanyl-Laced Cocaine Overdose. ACS Chem 
Neurosci 2019, 10 (8), 3486-3499. 

5. Wu, X.; Xie, S.; Wang, L.; Fan, P.; Ge, S.; Xie, X. Q.; Wu, W., A computational strategy for finding 
novel targets and therapeutic compounds for opioid dependence. PLoS One 2018, 13 (11), 
e0207027. 

6. Zhou, L.; Zhou, S.; Yang, P.; Tian, Y.; Feng, Z.; Xie, X. Q.; Liu, Y., Targeted inhibition of the type 2 
cannabinoid receptor is a novel approach to reduce renal fibrosis. Kidney Int 2018, 94 (4), 756-772. 

7. Bian, Y.; Jing, Y.; Wang, L.; Ma, S.; Jun, J. J.; Xie, X. Q., Prediction of Orthosteric and Allosteric 
Regulations on Cannabinoid Receptors Using Supervised Machine Learning Classifiers. Mol Pharm 
2019, 16 (6), 2605-2615. 

8. Bian, Y. M.; He, X. B.; Jing, Y. K.; Wang, L. R.; Wang, J. M.; Xie, X. Q., Computational systems 
pharmacology analysis of cannabidiol: a combination of chemogenomics-knowledgebase network 
analysis and integrated in silico modeling and simulation. Acta Pharmacol Sin 2019, 40 (3), 374-
386. 

9. Ge, H.; Bian, Y.; He, X.; Xie, X. Q.; Wang, J., Significantly different effects of tetrahydroberberrubine 
enantiomers on dopamine D1/D2 receptors revealed by experimental study and integrated in silico 
simulation. J Comput Aided Mol Des 2019, 33 (4), 447-459. 

10. Man, V. H.; He, X.; Derreumaux, P.; Ji, B.; Xie, X. Q.; Nguyen, P. H.; Wang, J., Effects of All-Atom 
Molecular Mechanics Force Fields on Amyloid Peptide Assembly: The Case of Abeta16-22 Dimer. 
J Chem Theory Comput 2019, 15 (2), 1440-1452. 

11. Wang, Y. Q.; Lin, W. W.; Wu, N.; Wang, S. Y.; Chen, M. Z.; Lin, Z. H.; Xie, X. Q.; Feng, Z. W., 
Structural insight into the serotonin (5-HT) receptor family by molecular docking, molecular dynamics 
simulation and systems pharmacology analysis. Acta Pharmacol Sin 2019, 40, 1138–1156. 

https://www.pitt.edu/~cedar/
https://www.pitt.edu/~cedar/
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12. Wu, N.; Feng, Z.; He, X.; Kwon, W.; Wang, J.; Xie, X. Q., Insight of Captagon Abuse by 

Chemogenomics Knowledgebase-guided Systems Pharmacology Target Mapping Analyses. Sci 
Rep 2019, 9 (1), 2268. 

13. Ji, B.; Liu, S.; Xue, Y.; He, X.; Man, V. H.; Xie, X. Q.; Wang, J., Prediction of drug-drug interactions 
between opioids and overdosed benzodiazepines using physiologically-based pharmacokinetic 
(PBPK) modeling and simulation. Drugs R & D 2019, 19. 

14. Fan, P.; Wang, N.; Wang, L.; Xie, X. Q., Autophagy And Apoptosis Specific Knowledgebases-
Guided Systems Pharmacology Drug Research. Curr Cancer Drug Targets 2019, E-pub Ahead of 
Print. 

15. Ma, S.; Attarwala, I. Y.; Xie, X. Q., SQSTM1/p62: A Potential Target for Neurodegenerative Disease. 
ACS Chem Neurosci 2019, 10 (5), 2094-2114. 

16. Wang, L.; Ma, S.; Hu, Z.; McGuire, T. F.; Xie, X. S., Chemogenomics Systems Pharmacology 
Mapping of Potential Drug Targets for Treatment of Traumatic Brain Injury. J Neurotrauma 2019, 36 
(4), 565-575. 

17. Hu, Z.; Wang, L.; Ma, S.; Kirisci, L.; Feng, Z.; Xue, Y.; Klunk, W. E.; Kamboh, M. I.; Sweet, R. A.; 
Becker, J.; Lv, Q.; Lopez, O. L.; Xie, X. Q., Synergism of antihypertensives and cholinesterase 
inhibitors in Alzheimer's disease. Alzheimers Dement (N Y) 2018, 4, 542-555. 

18. He, X. M., V. H.; Ji, B.; Xie, X.Q.; Wang, J. , Calculate protein-ligand binding affinities with the 
extended linear interaction energy method: Application on the cathepsin S set in the D3R grand 
challenge 3. J Comput Aided Mol Des 2019,  (33), 105-117. 

19. Man, V. H.; Li, M. S.; Wang, J.; Derreumaux, P.; Nguyen, P. H., Nonequilibrium atomistic molecular 
dynamics simulation of tubular nanomotor propelled by bubble propulsion. J Chem Phys 2019, 151 
(2), 024103. 

20. Man, V. H.; Truong, P. M.; Li, M. S.; Wang, J.; Van-Oanh, N. T.; Derreumaux, P.; Nguyen, P. H., 
Molecular Mechanism of the Cell Membrane Pore Formation Induced by Bubble Stable Cavitation. 
J Phys Chem B 2019, 123 (1), 71-78. 

21. Wang, J.; Ge, Y.; Xie, X. Q., Development and Testing of Druglike Screening Libraries. Journal of 
chemical information and modeling 2019, 59 (1), 53-65. 

22. Zhou, Z.; Feng, Z.; Hu, D.; Yang, P.; Gur, M.; Bahar, I.; Cristofanilli, M.; Gradishar, W. J.; Xie, X. Q.; 
Wan, Y., A novel small-molecule antagonizes PRMT5-mediated KLF4 methylation for targeted 
therapy. EBioMedicine 2019, 44, 98-111. 

23. Man, V. H.; Li, M. S.; Wang, J. M.; Derreumaux, P.; Nguyen, P. H., Interaction mechanism between 
the focused ultrasound and lipid membrane at the molecular level. J Chem Phys 2019, 150 (21). 

 

Computation Algorithms. Models and Tools:  
(1) TargetHunter:  Ligand-based target prediction tools with BioassayGeoMap function integrated. 

http://www.cbligand.org/TargetHunter 
(2) HTDocking: Structure-based target prediction tools for drug repurpose research. 

http://www.cbligand.org/HTDocking/ 
(3) BBB Predictor: Machine learning algorithms- AdaBoost and SVM-based tool is designed for 

predicting the permeability of blood-brain barrier (BBB) for compounds. 
http://www.cbligand.org/BBB/ 

(4) GPU-Accelerated Compound Library Comparison: Modern graphics process units (GPU) –
based parallel computing, millions of compound comparison can be accomplished in a few seconds. 
http://www.cbligand.org/gpu/ 

(5) LiCABEDS:  Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps (LiCABEDS), 
based on machine learning algorithm for compound classification prediction 
(www.CBLigand.org/LiCABEDS) 

(6) PAINS-Remover: A Computer-Aided Drug Design (CADD) tool to identify the false positives in 
experimental high-throughput screening data. (www.CBLigand.org/FPR) 

(7) Mol-Prop: GPU-accelerated molecular property calculation. (www.CBLigand.org/gpu)  
(8) MMFFT: A user-friendly web toolkit for generating molecular mechanical force field (MMFF) models 

for arbitrary chemicals. (https://mulan.pharmacy.pitt.edu/mmfft)   
(9) re-Affinity: A software tool to re-rank docking poses using the MM-PB/GBSA scoring functions 

(https://mulan.pharmacy.pitt.edu) 

 

http://www.cbligand.org/TargetHunter
http://www.cbligand.org/HTDocking/
http://www.cbligand.org/BBB/
http://www.cbligand.org/gpu/
http://www.cbligand.org/LiCABEDS
http://www.cbligand.org/FPR
http://www.cbligand.org/gpu)
https://mulan.pharmacy.pitt.edu/mmfft/
https://mulan.pharmacy.pitt.edu/
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Chemogenomics Databases:  
(1) CBID: Cannabinoid molecular information database http://www.cbligand.org/cbid  
(2) AlzPlatform: Chemogenomics Database for Alzheimer’s Disease, 

(http://www.cbligand.org/AD) 
(3) Hallucinogen: Chemogenomics Database for Hallucinogen Research 

(http://www.cbligand.org/hallucinagen )  
(4) StemCellCKB: Chemogenomics Database for Stem Cell Research 

(http://cbligand.org/StemCellCKB ) 
(5) CVDPlatform: Chemogenomics Database for Cardiovascular Disease 

(http://www.cbligand.org/CVD ) 
(6) DAKB: Chemogenomics Database for Drug abuse Research is designed for facilitating data-

sharing and information exchange among scientific research communities for drug abuse, 
including genes, proteins, small molecules and signal pathways, with online structure search 
functions and data analysis tools implemented. http://www.cbligand.org/CDAR 

(7) Hallucinogen: Chemogenomics KB for Hallucinogen research 
(www.CBLigand.org/hallucinogen) 

(8) CVD: Chemogenomics KB for cardiovascular diseases (www.cbligand.org/CVD) 
(9) TBI: Chemogenomics KB for traumatic brain injury (www.CBLigand.org/TBI) 

 
More technologies for core A can be found in our CCGS center. http://www.cbligand.org/CCGS/  
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CORE B 
 

MOLECULAR, CELLULAR AND SYSTEMS BIOLOGY METHODS 
AND TOOLS FOR COMPUTATIONAL DRUG ABUSE RESEARCH 

EXECUTIVE SUMMARY 
 

Ivet Bahar, Ph.D 

 
AIMS 
 
Specific Aim 1. Developing and implementing computational models, methods and software for 
evaluating and visualizing the functional (or dysfunctional) structures and dynamics of selected human 
transporters and receptors (and their mutants) involved in DA or dysregulation of excitatory signal 
transmission.  
 
Specific Aim 2.  Facilitating the design of new molecular intervention methods by developing and 
disseminating software tools for assessing target druggability and identifying sites that alter allosteric 
signaling and transport properties of DA targets investigated by the FRPs.  
 
Specific Aim 3. Assisting in the conceptualization of novel therapeutic strategies and advancement of DA 
research at large, by developing and enabling the use of computational tools for quantitative systems 
pharmacology (QSP). 
 
(Specific Aims remain unchanged.)  

 

ACCOMPLISHMENTS 
 

Major Activities 
 
Funded research projects (FRPs) and other collaborations 
 
(1) In collaboration with the Sorkin lab (PITT; FRP), we explored the trimerization of dopamine transporter 
(DAT) in the absence and presence of a small molecule, AIM-100, as well as its implication on DAT 
structural dynamics using a combination of computational and biochemical methods, and single-molecule 
live-cell imaging assays.1 We performed in silico saturation mutagenesis experiments to evaluate the 
effect of all 19 substitutions at all sequence positions on DAT function using Rhapsody v2.1  
  
(2) In a collaborative study with the Wenzel (PITT; FRP), Kagan and Bayir labs at the University of 
Pittsburgh, we characterized the differential dynamics, specificity, and allostery of lipoxygenase family 
members2, and unearthed the highly specific mechanisms of catalytic competence in selective oxidation 
of membrane ETE-PE to ferroptotic death signals, HpETE-PE.3 
 
(3) In collaboration with the Wan (Northwestern) and Xie (Pitt; Core A) labs, we developed a small 
molecule inhibitor, WX2–43, that specifically intercepts the interaction between PRMT5 and KLF4, thereby 
enhancing KLF4 degradation. 4 
 
(4) In collaboration with the Chu lab (PITT; FRP), we investigated the protein network complex involving 
PINK1, VCP and PKA which resulted in a manuscript published in eNeuro.5 
 
(5) In collaboration with the Amara lab (NIMH;FRP), we characterized the modulation mechanism of anion 
channel gating by C-terminal domains in excitatory amino acid transporters (manuscript in preparation).6  
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(6) In collaboration with the Greger lab (MRC, UK),  we identified a novel ligand-binding  site specific to 
GluA3 AMPAR N-terminal domain  (NTD), resulting from its unique conformational flexibility that we 
confirmed with crystal structures trapped in vastly different states.7 
 
(7) In collaboration with the Khananshvili lab (Tel-Aviv University, Israel), we identified  key residues 
controlling bidirectional ion movements in Na+/Ca2+ exchanger, which resulted in a manuscript published 
in Cell Cacium.8 
 
Methodology and technology development  
 
(8) We developed, SignDy, an integrated pipeline for evaluating the signature dynamics of protein 
families based on elastic network models, which led to a major publication in Mol Biol Evol (Aim 1).9 
 
(9) We developed methodologies to study the shared dynamics of LeuT superfamily members and the 
allosteric differentiation by structural irregularities and multimerization (Aim 1), published in Philos Trans 
R Soc Lond B Biol Sci.10 
 
(10) A new version of Rhapsody11 has been generated (Rhapsody v2) to incorporate features computed 
from Pfam sequence alignments12, namely the Shannon entropy and the coevolution propensity using 
mutual information as a metric.13-15 (an extension of previous aims)  
 
(11) We designed Pharmmaker16 for building pharmacophore model using outputs of druggability 
simulations (DruGUI). The pharmacophore models can be used for virtual screening of libraries of small 
molecules. A strong aspect of the method is that Pharmmaker uses multiple target conformations 
dependent on the binding poses of probes where they interact during druggability simulations, meaning 
that the binding score in virtual screening can be evaluated in a more realistic manner. Also, we can have 
multiple pharmacophore models with different target conformations and probe poses, which can be 
analyzed statistically (Aim 2). 
 
(12) We developed Quartata, an in silico chemogenomics methodology and server for linking 
drugs/chemicals, targets, pathways and GO annotations (manuscript in preparation) (Aim 3). 
 
(13) We developed SMOKE17 for estimating unknown parameters of dynamical models using statistical 
model checking techniques. It can utilize both quantitative data and qualitative knowledge for calibrating 
large models with hundreds of unknown parameters. It was originally developed for analyzing ordinary 
differential equation (ODE) models of biological networks, and currently being generalized to other 
modeling formalisms including stochastic models, rule-based models, and hybrid models (Aim 3). 

 

Significant Results 
 

Below we present some examples of results and highlights from Core B research progress accomplished 
during the past funding period. 
 
(1) Trimerization of dopamine transporter triggered by AIM-100 binding: Underlying molecular 
mechanisms and effect of mutations.  The Sorkin lab (PITT; FRP) recently found that a furopyrimidine, 
AIM-100 triggered oligomerization of dopamine transporters (DATs), which promotes endocytosis and 
thereby may moderate dopaminergic transmission18. Despite the significance of these events in mediating 
cellular responses, the underlying molecular mechanisms remain unclear. In the present study, we 
determined in-silico three structural models, for possible trimerization of DATs, in accord with the versatility 
of LeuT fold to stabilize dimeric or higher order constructs with a variety of packing geometries. Site-
directed mutagenesis was performed  to examine the effect of these elements/sites on DAT 
oligomerization and endocytosis (enhanced by AIM-100), and the experimental data were further 
interpreted using a novel machine learning classifier11 for assessing the impact of single amino acid 
variants (SAVs) (see Figure 1). Overall the study suggests the possibility of controlling the effective 
dopamine transport upon altering the oligomerization state of DAT by small molecular binding, as a 
possible intervention strategy to modulate dopaminergic signaling.    
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Figure 1:  MD simulations reveal the probable 
binding poses of AIM-100 onto hDAT trimer in the 
IF (A) and OF (B) state. In silico saturation 
mutagenesis results and comparison with 
experimental data. (C) The membrane expression 
of 13 single amino acid variants (SAVs) has been 
measured in vitro. On the abscissa, these variants 
are sorted based on the change in their expression 
levels (left, red and light-red shade: no or partial 
expression; right, blue shade: normal/wild-type 
expression). On the y-axis, the functional impact as 
predicted by Rhapsody (red circles), EVmutation 
(blue inverted triangles) and PolyPhen-2 (green 
squares) is shown. The EVmutation epistatic score 
has been normalized so that the optimal cutoff 
between predicted neutral and deleterious effects 
matches that for Rhapsody and PolyPhen-2 (y = 
0.5). Correct predictions lie within the two shaded 
areas, red (true positives) and blue (true 
negatives). (D) DAT monomer color-coded by the 
average pathogenicity shown in C (red/blue: 
high/low pathogenicity probability). The 13 
mutations sites are labelled and shown in licorice. 

(2) Application of Quantitative Systems Pharmacology on drugs of abuse to analyze the molecular 
mechanisms of drug addiction progress. We carried out a comprehensive analysis of cellular pathways 
implicated in a diverse set of 50 drugs of abuse using quantitative systems pharmacology methods (see 
Figure 2). The analysis of the drug/ligand-target interactions compiled in DrugBank and STITCH 
databases revealed 142 known and 48 newly predicted targets, which have been further analyzed to 
identify the KEGG pathways enriched at different stages of drug addiction cycle, as well as those 
implicated in cell signaling and regulation events associated with drug abuse. Apart from synaptic 
neurotransmission pathways detected as upstream signaling modules that “sense” the early effects of 
drugs of abuse, pathways involved in neuroplasticity are distinguished as determinants of neuronal 
morphological changes. Notably, many signaling pathways converge on important targets such as 
mTORC1. The latter emerges as a universal effector of the persistent restructuring of neurons in response 
to continued use of drugs of abuse. 

 
Figure 2. Workflow of the quantitative systems pharmacological analysis. (A) 50 drugs of abuse with a diversity of 
chemical structures and pharmacological actions were collected as probes. (B) 142 known targets of these drugs were 
identified through drug-target interaction database DrugBank and chemicals interactions database STITCH. (C) 48 
predicted targets were predicted using our probabilistic matrix factorization (PMF) method19. (D) 173 human pathways were 
inferred from the KEGG pathways database by mapping the known and predicted targets. (E-F) The pathways were grouped 
into 5 clusters. The functioning of identified targets and pathways and their involvement in drug addiction were 
comprehensively examined. More details see ref20. 

 
(3) Development of a in silico chemogenomics methodology and server for linking 
drugs/chemicals, targets, pathways and GO annotations. We developed an easy and efficient web 
server QuartataWeb (http://quartata.csb.pitt.edu) (Figure 3) for mining known (experimentally verified) 
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and predicted interactions for 5,494 drugs in DrugBank21 and 315,514 chemicals in STITCH,22 along with 
the confidence levels of the predicted chemical-target interactions (CTIs) using a machine learning based 
model. In addition, QuartataWeb links targets to KEGG23 pathways and GO annotations,24 performs 
quantitative evaluation of the level of enrichment of pathways and GO annotations given a set of 
drugs/chemicals or targets. Graphical user interfaces including customized interactive network viewers for 
CTIs and target-pathway associations facilitate the analysis of outputs and the inference of biological 
function.  

 
Figure 3. Description of QuartataWeb workflow, data, and performance. A. Schematic description of QuartataWeb 
workflow. Known CTIs extracted from DrugBank and STITCH are used as source datasets for latent factor models 
(LFMs). The predicted CTIs, chemical-chemical similarity and target-target similarity are pre-computed from the LFMs 
so as enable easy retrieval. 2D fingerprint similarities between pairs of chemicals are also pre-computed using Python 
RDKit module (http://rdkit.org). Pathways and GO terms are extracted from KEGG and GO resources, respectively, 
and stored in our server. The enriched KEGG pathways and GO terms corresponding to the queried targets, or to the 
known and predicted targets of the queried chemicals, are provided as outputs. B-C. Histograms of the degrees of 
drugs/chemicals and targets in the bipartite CTI networks based on STITCH-experimental dataset. Chemicals and 
targets exhibit maximal degrees of 4,044, and 26,803, respectively; those with degree less than 250 are displayed here. 
Dashed vertical lines indicate the mean (red) and median (black), also written in the inset. D. Performance of 
QuartataWeb shown for DrugBank-approved (red) and DrugBank-all (black) datasets. The abscissa indicates the rank 
m (1<m<1,000) of top-ranking predictions, among all potential CTIs (4,217,124 and 15,408,173 in the respective 
datasets. The ordinate indicates the average number of recaptured hidden interactions (TPs). For the 1,000 top ranked 
predictions average precisions f 0.684 and 0.706 are attained in the two respective datasets. E-F. Distribution of 
confidence scores for predicted CTIs computed for DrugBank-all (E) and STITCH-experimental (F). (submitted) 

 

(4) PINK1 interacts with VCP/p97 and activates PKA to promote NSFL1C/p47 phosphorylation and 
dendritic arborization in neurons (eNeuro 2018). While PTEN-induced kinase 1 (PINK1) is well 
characterized for its role in mitochondrial homeostasis, much less is known concerning its ability to prevent 
synaptodendritic degeneration. In collaboration with Chu lab (PITT; FRP), we found that PINK1 binds and 
phosphorylates the catalytic subunit of PKA at T197 [PKAcat(pT197)], a site known to activate the PKA 
holoenzyme. PKA in turn phosphorylates p47 at a novel site (S176) to regulate dendritic complexity. Given 
that PINK1 physically interacts with both the PKA holoenzyme and the VCP-p47 complex to promote 
dendritic arborization, we propose that PINK1 scaffolds a novel PINK1-VCP-PKA-p47 signaling pathway 
to orchestrate dendritogenesis in neurons (Figure 4). These findings highlight an important mechanism 
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by which proteins implicated in Parkinson’s disease (PD; PINK1) and frontotemporal dementia (FTD; VCP) 
interact with each other to support the health and maintenance of neuronal arbors. 

    
 
 
 
Figure 4: PINK1 interacts with VCP/p97 and 
activates PKA to promote NSFL1C/p47 
phosphorylation and dendritic arborization in 
neurons. For details see ref5. 

 
 
 
 
 

(5) Druggability simulations and X-Ray crystallography reveal a ligand-binding site in the GluA3 
AMPA receptor N-terminal domain (Structure 2018) Ionotropic glutamate receptors (iGluRs) mediate 
the vast majority of excitatory neurotransmission in the brain. Their dysfunction is implicated in several 
neurological disorders, rendering iGluRs potential drug targets. Here, we performed a systematic analysis 
of the druggability of two major iGluR subfamilies, using molecular dynamics simulations in the presence 
of drug-like molecules7. We demonstrate the applicability of druggability simulations by faithfully identifying 
known agonist and modulator sites on AMPA receptors (AMPARs) (see Figure 5A) and NMDA receptors. 
Simulations produced the expected allosteric changes of the AMPAR ligand-binding domain in response 
to agonist.  We also identified a novel ligand-binding site specific to the GluA3 AMPAR N-terminal domain 
(NTD), resulting from its unique conformational flexibility that we explored further with new crystal 
structures trapped in vastly different states (see Figure 5B). In addition to providing novel insights into 
iGluR NTD dynamics, our approach identifies druggable sites and permits the determination of 
pharmacophoric features towards novel iGluR modulators (see Figure 5C).  

 

 
 

Figure 5. Druggability Simulations, X-Ray Crystallography, and Pharmacophore model for AMPA receptor (A) 
Druggability MD detecting a known ligand binding site of GluA2 LBD: Large balls are hot spots by probe molecules and their 
colors are different probes. They closely overlap with the experimentally observed positions of the allosteric modulators 
cyclothiazide (cyan balls/stick; from PDB ID: 1LBC) and (R,R)-2b (magenta balls/sticks; PDB ID: 4U5B). (B) Novel ligand 
binding site in GluA3 NTD. (top) Druggability MD probes are shown as spheres near the LL interfaces of the GluA3 NTD 
dimer. (middle) New crystal structure of the GluA3 NTD reveal new dimeric state, which is similar to the open dimer. (bottom) 
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Number of contacts between probe molecules and residues at the LL interface are observed in the MD simulations. (C) 

Pharmacophore model in GluA3 NTD LL interface. For details see ref.7 
 
(6) Shared signature dynamics tempered by local fluctuations enables fold adaptability and 
specificity (Mol Biol Evol; In Press). Recent studies have drawn attention to the evolution of protein 
dynamics, in addition to sequence and structure, based on the premise structure-encodes-dynamics-
encodes-function. Of interest is to understand how functional differentiation is accomplished while 
maintaining the fold, or how intrinsic dynamics plays out in the evolution of structural variations and 
functional specificity. We performed a systematic computational analysis of 26,899 proteins belonging to 
116 CATH superfamilies. Characterizing cooperative mechanisms and convergent/divergent features that 
underlie the shared/differentiated dynamics of family members required a methodology that lends itself to 
efficient analyses of large ensembles of proteins. We therefore introduced, SignDy, an integrated pipeline 
for evaluating the signature dynamics of families based on elastic network models (Figure 6).  
 
Our analysis showed that family members share conserved, highly cooperative (global) modes of motion. 
Importantly, our analysis discloses a subset of motions that sharply distinguishes subfamilies, which lie in 
a low-to-intermediate frequency (LTIF) regime of the mode spectrum. This regime has maximal impact on 
functional differentiation of families into subfamilies, while being evolutionarily conserved among subfamily 
members. Notably, the high frequency (HF) end of the spectrum also reveals evolutionary conserved 
features across and within subfamilies; but in sharp contrast to global motions, HF modes are minimally 
collective. Modulation of robust/conserved global dynamics by LTIF fluctuations thus emerges as a 
versatile mechanism ensuring the adaptability of selected folds and the specificity of their subfamilies. 
SignDy further allows for dynamics-based categorization as a new layer of information relevant to 
distinctive mechanisms of action of subfamilies, beyond sequence or structural classifications. 

 

 
Figure 6: SignDy workflow. The workflow is separated into two main parts: dataset preparation (left; steps 1-3) and SignDy 
operations and outputs (right; steps 4-7). Cylinders and light grey rectangular boxes represent databases and corresponding 
query inputs, respectively. Details see ref9. 
 

(7) Allosteric differentiation by structural irregularities and multimerization (Philos Trans R Soc Lond 
B Biol Sci 2018). The LeuT-fold superfamily includes secondary active transporters from different 
functional families, which share a common tertiary structure, despite having a remarkably low sequence 
similarity. By identifying the common structural and dynamical features upon principal component analysis 
of a comprehensive ensemble of 90 experimentally resolved structures and anisotropic network model 
evaluation of collective motions, we provide a unified point of view for understanding the reasons why this 
particular fold has been selected by evolution to accomplish such a broad spectrum of functions. The 
parallel identification of conserved sequence features, localized at specific sites of transmembrane 
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helices, sheds light on the role of broken helices (TM1 and TM6 in LeuT) in promoting ion/substrate binding 
and allosteric interconversion between the outward- and inward-facing conformations of transporters. 
Finally, the determination of the dynamics landscape for the structural ensemble (Figure 7) provides a 
promising framework for the classification of transporters based on their dynamics, and the 
characterization of the collective movements that favor multimerization. 

 

 
Figure 7. Classification of LeuT-fold transporters based on their collective motions. The distribution of the 104 
monomers/protomers are displayed in the subspaces of collective modes spanned by the three (a) and two (b) softest ANM 
modes. Panel (a) shows the clustering of conformers resolved for the same transporter, or those belonging to the same 
functional families (enclosed in ellipses). Panel (b) provides a clear separation of (i) the monomeric and dimeric transporters 
(lower left portion; light blue and light yellow) and trimeric transporters (upper right portion), and (ii) the inward-facing and 
outward-facing conformers within each region. ANM mode 2 (see inset) directs the reconfiguration of the LeuT EL3 (loop–
helix, yellow) along a direction (blue arrows on the ribbon diagram) in accord with the structural change undergone by the 
equivalent BetP H7 helix (orange) upon trimerization. Details see ref10. 
 

(8) Characterization of Differential Dynamics, Specificity, and Allostery of Lipoxygenase Family 
Members (J. Chem. Inf. Model. 2019) Accurate modeling of structural dynamics of proteins and their 
differentiation across different species can help understand generic mechanisms of function shared by 
family members and the molecular basis of the specificity of individual members. We focused here on the 
family of lipoxygenases, enzymes that catalyze lipid oxidation, the mammalian and bacterial structures of 
which have been elucidated. We present a systematic method of approach for characterizing the 
sequence, structure, dynamics, and allosteric signaling properties of these enzymes using a combination 
of structure-based models and methods and bioinformatics tools applied to a data set of 88 structures 
(see Figure 8), in collaboration with the Wentzel lab (PITT; FRP). The analysis elucidates the signature 
dynamics of the lipoxygenase family and its differentiation among members, as well as key sites that 
enable its adaptation to specific substrate binding and allosteric activity.  
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Figure 8: Systematic method of approach for 
characterizing the sequence, structure, dynamics, and 
allosteric signaling properties of lipoxygenase family 
members. Details see Ref2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(9) Pharmmaker: Pharmacophore modeling and hit identification based on druggability 
simulations (Protein science 2019) Pharmmaker is designed for building pharmacophore model using 
outputs of druggability simulations (DruGUI). The pharmacophore models can be used for virtual 
screening of libraries of small molecules. This is a suite of programs (see Figure 9): (1) druggability 
molecular dynamics simulations using probe compounds that contain drug-like functional groups and/or 
features shared by the lead compounds. (2) Identify high affinity residues on the target protein for each 
probe molecule type from druggability simulations; 25,26 (3) Preselect high affinity residues near a 
druggable site; (4) Analyze interactions between high affinity residues and probe at the druggable site for 
each probe type and rank the interaction pairs between residue and probe; (5) Select snapshots with the 
top ranking interaction pairs; (6) The selected snapshots have target conformations and poses of probes, 
and these are used for the construction of pharmacophore models, and the pharmacophore models are 
then used as filters for identifying hits in structure-based virtual screening using Pharmit server 27. A strong 
aspect of the method is that Pharmmaker uses multiple target conformations dependent on the binding 
poses of probes where they interact during druggability simulations. Therefore, the binding score in virtual 
screening can be more evaluated in a more realistic manner. Also, we can have multiple pharmacophore 
models with different target conformations and probe poses, which can be analyzed statistically. We 
expect we can find novel binding pockets and potential compounds, opening new avenues for structure-
based design of novel allosteric modulators. 

 
 

 
Figure. 9. Computational protocol to select compounds using Pharmmaker. Pharmmaker is for constructing 
pharmacophore models, in conjunction with druggability simulations (DruGUI) and virtual screening (Pharmit).  
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Summary of accomplishments  
(1) Molecular modeling NSS mechanics led to three publications:   
 
Cheng MH, Bahar I. (2019) Monoamine transporters: structure, intrinsic dynamics and allosteric 
regulation. Nature Structural & Molecular Biology 26, 545–556. 
 
Lee JY, Krieger J, Herguedas B, García-Nafría J, Dutta A, Shaikh SA, Greger IH, Bahar I. (2019) 
Druggability Simulations and X-ray Crystallography Reveal a Ligand-binding Site in the GluA3 AMPA 
Receptor N-terminal Domain. Structure 27: 241-252, PMID: 30528594. 
 
Ponzoni L, Zhang S, Cheng MH, Bahar I. (2018) Shared dynamics of LeuT superfamily members and 
allosteric differentiation by structural irregularities and multimerization. Philos Trans R Soc Lond B Biol Sci 
373: 1749 PMID: 29735731 
 
(2) In collaboration with Xie lab (Core A), and Wan lab (P/FP), our computational and experimental studies 
on small-molecule antagonizes KLF4 methylation has been published on EBioMedicine:  
 
Zhou Z, Feng Z, Hu D, Yang P, Gur M, Bahar I, Cristofanilli M, Gradishar WJ, Xie XQ, Wan Y. (2019)  A 
novel small-molecule antagonizes PRMT5-mediated KLF4 methylation for targeted 
therapy. EBioMedicine 19: 30312-30313.  
 
(3) In collaboration with Sorkin lab (FRP6), our computational and experimental studies of the trimerization 
of dopamine transporters has been published on Neuropharmacology: 
 
Cheng MH, Ponzoni L, Sorkina T, Lee JY, Zhang S, Sorkin A, Bahar I. (2019) Trimerization of Dopamine 
Transporter Triggered by AIM-100 Binding: Molecular Mechanisms and Effect of Mutations. 
Neuropharmacology [Epub ahead of print] PMID: 31228486 
 
(4) In collaboration with Wenzel lab (FRP13), our computational and experimental studies on 
lipoxygenases led to two publications: 
 
Anthonymuthu T, Kenny E, Shrivastava I, Tyurina YY, Hier Z, Ting H-C, Dar H, Tyurin V, Nesterova A, 
Amoscato A, Mikulska-Ruminska K, Rosenbaum J, Mao G, Jinming Z, Conrad M, Kellum J, Wenzel S, 
VanDemark A, Bahar I, Kagan V, Bayir H (2018) Empowerment of 15-lipoxygenase catalytic competence 
in selective oxidation of membrane ETE-PE to ferroptotic death signals, HpETE-PE. J Am Chem Soc 
2018, 140 (51), pp 17835-17839 PMID: 30525572. 
 
Mikulska-Ruminska K, Shrivastava IH, Krieger JM, Zhang S, Li H, Bayir H, Wenzel SE, VanDemark AP, 
Kagan VE, Bahar I. (2019) Characterization of differential dynamics, specificity, and allostery of 
lipoxygenase family members. J Chem Inf Model. [Epub ahead of print] PMID: 30762363. 
 
(5) In collaboration with Chu lab (the proposed FRP in the next funding term), our integrated study on 
NSFL1C/p47 phosphorylation and dendritic arborization in neurons has been published on eNeuro: 
 
Wang K, Steer E, Otero PA, Bateman N, Cheng MH, Scott A, Wu C, Bahar I, Shih Y-T, Hsueh Y-P, Chu 
C (2018) PINK1 Interacts with VCP/p97 and Activates PKA to Promote NSFL1C/p47 Phosphorylation and 
Dendritic Arborization in Neurons. eNeuro 5 (6) ENEURO.0466-18.2018. PMID: 30783609. 
 
(6) Quantitative Systems Pharmacological (QSP) analysis of absued drug associaed targets and pathways 
led to a publicaiton: 
 
Pei F., Li H., Liu B. and Bahar I. (2019) Quantitative Systems Pharmacological Analysis of Drugs of Abuse 
Reveals the Pleiotropy of Their Targets and the Effector Role of mTORC1. Front. Pharmacol., 10, 1-16. 
 
(7) Development of methodologies led to four publications: 

https://www.sciencedirect.com/science/article/pii/S2352396419303123
https://www.sciencedirect.com/science/article/pii/S2352396419303123
https://www.sciencedirect.com/science/article/pii/S2352396419303123
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Zhang S., Li H., Krieger J., Bahar I. Shared signature dynamics tempered by local fluctuations enables 
fold adaptability and specificity. Mol Biol Evol 36 (9), 2053–2068. 
 
Liu, B.; Gyori, B.; Thiagarajan, P. S. Statistical Model Checking based analysis of biological networks. 
Automated Reasoning for Systems Biology and Medicine 2019; pp 63-92. 
 
Lee, J. Y., Krieger, J., Li, H. & Bahar, I. Pharmmaker: Pharmacophore modeling and hit identification 
based on druggability simulations Protein Science, in press (2019). 
 
Taylor DL, Gough A, Schurdak ME, Vernetti L, Chennubhotla CS, Lefever D, Pei F, Faeder JR, Lezon TR, 
Stern AM, Bahar I. (2019) “Harnessing Human Microphysiology Systems as Key Experimental Models for 
Quantitative Systems Pharmacology” in Handbook of Experimental Pharmacology, p 1-41. 

 

OPPORTUNITIES FOR TRAINING & PROFESSIONAL DEVELOPMENT  
 
Mary Hongying Cheng, PhD in Chemical Engineering 
Mary’s research interest and expertise lie in protein modeling and medicinal chemistry, with focus on 
molecular mechanism of (i) transporter function, (ii) drug modulation (iii) ion transport through membrane 
protein channels and (iv) protein-lipid and lipid-lipid interactions. Her current research focuses on 
understanding neurotransmitter transport mechanisms. 
 
Ji Young Lee, PhD in Physics 
Ji Young is specialized in molecular computations for gaining insights into the activation/ inactivation of 
proteins involved in neurosignaling. He is currently working on ionotropic glutamate receptors ion channels 
mediating excitatory neurotransmission. Using the Anisotropic Network Model (ANM), he has found that 
two iGluR families, AMPA receptor (AMPAR) and NMDA receptor (NMDAR), share robust movements. 
He is actively involved in further development and upgrades of the ProDy API maintained by the Bahar 
lab. 
 
Bing Liu, PhD in Computer Science 
Bing Liu’s research area centers on computational systems biology. His work builds mathematical models 
to describe the dynamics of biological processes. He has developed probabilistic techniques to address 
stochasticity in biological systems and leveraged machine learning, formal methods, and high-
performance computing techniques to enable various analyses of large-scale systems. 
 
HongChun Li, PhD in Chemical Biology 
Dr. Li’s expertise is the development of the API for QSP; development of server and database for elastic 
network models (e.g. Gaussian network model database iGNM2.0); protein sequence classification based 
on machine learning methods, and drug-target association based on probabilistic matrix factorization. 
 
She (John) Zhang, PhD Student, CMU/Pitt Computational Biology  
John is currently working on applying elastic network models to several proteins including those sharing 
the LeuT fold family to determine their principal changes in conformations about the known structures and 
relate these structural changes to their respective biological functions. He is contributing to the 
development and upgrades of the ProDy API maintained by the Bahar lab. 
 
Fen Pei, PhD Student, CMU/Pitt Computational Biology  
Fen is currently working on applying QSP to several proteins including those of abuse drug targeted 
proteins. She is contributing to the development and upgrades of the Balestra Web server. 
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RESULTS DISSEMINATED TO COMMUNITIES OF INTEREST  

(1) All the results are submitted for publication, resulting in 16 peer-reviewed journal publications/book 
chapters (Jul 2018-Sep 2019). More details see C.1. Publications. 

(2) The codes are made accessible online, and two servers, ProDy and Balestra, are being further 
developed to facilitate the broader use by the community. More details see C.3.  
Technologies or techniques. Furthermore, we have implemented 

(3) Presentations and posters were presented in annual society meetings 

1. Ji Young Lee, James Krieger, Beatriz Herguedas, Javier García-Nafría, Anindita Dutta, Saher A. 
Shaikh, Ingo H Greger, and Ivet Bahar, “A ligand-binding site in the GluA3 AMPA receptor N-terminal 
domain observed in druggability simulations and X-ray crystallography”, Biophysical Society 63th 
Annual Meeting, Baltimore, Maryland, USA, Mar 2019  

2. James M. Krieger, Béatriz Herguedas, Bishal Singh, Jiyoung Lee, Burak Kaynak, Ingo Greger, and 
Ivet Bahar, “Dynamics of AMPA Receptors from Simulations and Electron Microscopy” Biophysical 
Society 63th Annual Meeting, Baltimore, Maryland, USA, Mar 2019; Biophysical Journal, Vol. 116, 
Issue 3, p344a Published in issue: February 15, 2019 

3. Luca Ponzoni and Ivet Bahar “Structural Dynamics is a Determinant of the Functional Significance of 
Missense Variants”, Workshop at Temple University, Philadelphia: "Statistical Mechanics of Protein 
Sequences: from fitness to free energy landscapes and back", May 4th 2018.  

4. She Zhang and Ivet Bahar “Cell-to-Cell Heterogeneities at Genome Scale Investigated by the 
Gaussian Network Model”, Pitt Day in Harrisburg, May 23, 2018. 

5. Bing Liu. “Systems Biology, Artificial Intelligence, and Better Life”, Fudan-Guanghua International 
Forum for Young Scholars, Shanghai, China, December 2018. 

 
(4) Invited Talks (Core B PI Ivet Bahar) 

1. Invited talk by Bahar, at Jacques Monod Conference, Sciences biologiques Ecologie et 
Environnement, Ligand-gated ion channels from atomic structure to synaptic 
transmission. Roscoff, France, on May 20-24, 2019: 

2. Seminar by I. Bahar. National Institute of Health (NIH) National Institute on Drug Abuse (NIDA) 
Intramural Research Program (IRP) Seminar Series. Baltimore, MD, USA (May 14, 2019) 

3. Invited Speaker (I. Bahar). Multiscale Modeling of Chromatin: Bridging Experiment with Theory. 
(Biophysical Society Thematic Meeting.) Les Houches, France. March 31-April 5, 2019 

4. Invited Symposium Speaker (I. Bahar) at 63rd Annual Meeting of the Biophysical Society, 
Symposium on Glutamate Receptors. Baltimore, MD, March 2-4, 2019 

5. Invited Speaker (I. Bahar) at Conference on Modeling of Protein Interactions (MPI). Lawrence, 
Kansas .Nov 8-10, 2018 

6. Invited Speaker (I. Bahar) at  CECAM (Centre European pour le Calcul Atomique et 
Moléculaire) Workshop, "Multiscale simulations of allosteric regulatory mechanisms in cancer-
associated proteins and signaling protein networks," Lugano, Switzerland Oct 15-17, 2018. 

7. Invited Speaker (I. Bahar). Computational Biology Workshop, Arizona State University, Phoenix, 
Arizona. Oct 6-8, 2018 

8. Invited Speaker (I. Bahar) Inaugural International Transmembrane Transporter Society (ITTS) 
Symposium. Vienna, Austria. Session Organizer and Speaker (Sept 18-21, 2018) 

9. Invited Speaker (I. Bahar) CECAM (Centre European pour le Calcul Atomique et Moléculaire) 
Workshop, "Normal modes of biological macromolecules: methods and applications," Paris, 
France (Sept 12-14, 2018) 

10. Session Organizer (I. Bahar) European Conference in Computational Biology (ECCB) 2018, 
jointly held with the ISMB (International Society for Computational Biology). Athens, Greece. 
(Sept 9-12, 2018). 

https://cjm2-2019.sciencesconf.org/
https://cjm2-2019.sciencesconf.org/
https://cjm2-2019.sciencesconf.org/
https://www.biophysics.org/2019meeting#/
https://www.biophysics.org/2019meeting#/
http://compbio.ku.edu/mpi-conference
https://www.cecam.org/workshop-1576.html
https://www.cecam.org/workshop-1576.html
http://www.ittsociety.org/
http://www.ittsociety.org/
https://www.cecam.org/workshop-1554.html
http://eccb18.org/
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11. Invited Speaker (I. Bahar) 6th Annual iGluRetreat, jointly held with the Department of Chemistry 
of Carnegie Mellon University and the Department of Neuroscience of the University of 
Pittsburgh. Pittsburgh, PA. July 31-August 2, 2018. 

12. 6th Annual iGluRetreat, jointly held with the Department of Chemistry of Carnegie Mellon 
University and the Department of Neuroscience of the University of Pittsburgh. Pittsburgh, PA. 
Invited Speaker. 

 

PLANS FOR NEXT PERIOD  

Below is a summary of anticipated Core B activities for the coming year: 
 
(1) Coarse-grained molecular dynamics (CGMD) simulations of complexes formed by DAT and 
SERT (Aim 1).  One of our current main interests is to understand interaction between DATs and 
membrane lipids. Some our ongoing studies are focusing on this issue. Our current CGMD results show 
that DAT variations and membrane are closely related and furthermore DAT clustering is also regulated 
by membrane. We plan to investigate in more details on the function of DAT, its clustering and interaction 
with neuronal lipids using CGMD. We will extend to SERT-SERT complex, taking advantage of the newly 
resolved SERT structures in multiple conformations.  
 
(2) Improvement of MCell simulations of dopamine signaling (an extension of previous aims) We 
recently developed a multiscale model for examining the effects of spatial complexity and firing patterns 
on dopamine reuptake28. We used electron microscopy (EM) images and immunofluorescence of 
transgenic knock-in mouse brains that express HA-tagged DAT in dopamine neurons (performed in Sorkin 
lab; DBP3) to construct a realistic MCell model28. DAT spatial distributions and structural heterogeneities 
were observed to alter the efficiency of DAT, demonstrating that realistic spatial descriptions are required 
to accurately simulate DA reuptake. We plan to improve our current MCell modeling by implementing new 
features: (1) 2D diffusion of DAT. Our previous simulations did not include the effect of the diffusion of 
DAT on the membrane of the synaptic cells. We will upgrade MCell to allow for the diffusion of membrane 
proteins, and examine the effect of their clustering or oligomerization on dopamine reuptake and signaling 
properties by conducting simulations that are at least one order of magnitude longer than our previous 
(100 milliseconds) simulations.(2) There are conflict results reported in the literature regarding the lipid 
microdomain localization,  trafficking and regulation of dopamine transporters and receptors (see recent 
review29). Different pathways and trafficking may exist for the “raft” and “non-raft” DATs30,31, to which DAT 
is dynamically sequestrated32. Non-raft populations may be responsible for AMPH-induced DAT 
internalization, whereas raft populations may dominate DAT-mediated efflux30.We plan to improve our 
current MCell simulation to enable subcellular distribution/simulations of DATs in the lipid microdomains. 
 
(3) Further development of Rhapsody (an extension of previous aims). The general idea behind the 
2018 implementation of the algorithm11 is maintained in the updated version. Namely, we propose an 
approach for predicting the outcome of amino acid substitutions in (human) proteins, based on a random 
forest classifier trained over not only well-established sequence-based (e.g. conservation of wild-
type/mutated amino acid) and structural (computed from PDB structures) properties, but 
also dynamical properties, derived from coarse-grained Elastic Network Models (ENM). The focus on the 
dynamical characterization of mutation sites provides an orthogonal approach to the problem of variants’ 
classification that allows us to stand out with respect to other analogous methods. In the second iteration 
of the algorithm (RHAPSODY), we pursue the goal of a better integration between different computational 
strategies, by collecting a more diverse set of features. Major upgrades will include: (i) an expanded 
feature set, now comprising conservation and coevolution properties extracted from Pfam domains, (ii) a 
more refined dataset of about 20,000 human missense variants, built from consensus between clinical 
interpretations of variants found in multiple databases, (iii) the flexibility of using a custom PDB structure 
for the evaluation of structural and dynamical features, such as specific conformational/oligomerization 
states, homologous structures from other organisms and theoretical homology models. Finally, the Python 
code has been completely overhauled and integrated with the ProDy library developed in our group, and 
a new, more user-friendly webserver will be made available to the public.  

https://crete.chem.cmu.edu/index.php/conferences/14-conferences
https://crete.chem.cmu.edu/index.php/conferences/14-conferences
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(4) Exploring conformational landscapes with collective molecular dynamics (CoMD) and 
comparison to MDeNM and ClustENM (Aim 3). Our lab groups recently developed methods that use 
normal mode analysis together with molecular dynamics simulations to understanding protein collective 
motions. These methods were developed with different goals in mind and have not been systematically 
compared. Collective molecular dynamics (CoMD) also has not been used much for exploring 
conformational landscapes. We therefore developed CoMD to this aim and compared it against the other 
two methods, MDeNM33 and ClustENM34. We used proteins of various sizes as test cases including HIV 
protease (~ 200 residues) and triosphosphate isomerase (~ 500 residues).  
 
(5) Further development and implementation of QuartataWeb (Aim 3). Building on our original work 
for mining protein-drug interactions using DrugBank as a data source, we have now extended the 
methodology (probabilistic matrix factorization 19) to be able to retrieve and analyze data from a 
significantly larger database, STITCH,35 of protein-small molecule interactions. The new resource, called 
QuartataWeb ((http://quartata.csb.pitt.edug), is an advanced version of the server BalestraWeb. 36 It now 
permits us to analyze the updated versions of DrugBank and STITCH, in addition to linking drugs and 
targets to pathways, using KEGG Pathways database. We anticipate QuartataWeb to serve as an 
important resource for enabling in silico chemogenomics analysis and linking drugs/chemicals, targets, 
pathways and GO annotations. 
 

PRODUCTS 

Publications:  

Sixteen publications from Core B acknowledged the P30 grant (Jul 2018-Sep 2019): 
 
1. Cheng MH, Bahar I. (2019) Monoamine transporters: structure, intrinsic dynamics and allosteric 
regulation. Nature Structural & Molecular Biology 26, 545–556. 
 
2. Zhou Z, Feng Z, Hu D, Yang P, Gur M, Bahar I, Cristofanilli M, Gradishar WJ, Xie XQ, Wan Y. (2019)  A 
novel small-molecule antagonizes PRMT5-mediated KLF4 methylation for targeted 
therapy. EBioMedicine 19: 30312-30313.  
 
3. Taylor DL, Gough A, Schurdak ME, Vernetti L, Chennubhotla CS, Lefever D, Pei F, Faeder JR, Lezon 
TR, Stern AM, Bahar I. (2019) “Harnessing Human Microphysiology Systems as Key Experimental Models 
for Quantitative Systems Pharmacology” in Handbook of Experimental Pharmacology, p 1-41. 
 
4. Thermozier S, Zhang X, Hou W, Fisher R, Epperly MW, Liu B, Bahar I, Wang H, Greenberger JS. 
(2019) Radioresistance of Serpinb3a-/- Mice and Derived Hematopoietic and Marrow Stromal Cell Lines. 
Radiation Research 192, 267-281 PMID: 31295086. 
 
5. Cheng MH, Ponzoni L, Sorkina T, Lee JY, Zhang S, Sorkin A, Bahar I. (2019) Trimerization of 
Dopamine Transporter Triggered by AIM-100 Binding: Molecular Mechanisms and Effect of Mutations. 
Neuropharmacology [Epub ahead of print] PMID: 31228486 
 
6. Zhang S., Li H., Krieger J., Bahar I. Shared signature dynamics tempered by local fluctuations enables 
fold adaptability and specificity. Mol Biol Evol 36 (9), 2053–2068. 
7. Pei F., Li H., Liu B. and Bahar I. (2019) Quantitative Systems Pharmacological Analysis of Drugs of 
Abuse Reveals the Pleiotropy of Their Targets and the Effector Role of mTORC1. Front. Pharmacol., 10, 
1-16. 
 
8. Mikulska-Ruminska K, Shrivastava IH, Krieger JM, Zhang S, Li H, Bayir H, Wenzel SE, VanDemark 
AP, Kagan VE, Bahar I. (2019) Characterization of differential dynamics, specificity, and allostery of 
lipoxygenase family members. J Chem Inf Model. [Epub ahead of print] PMID: 30762363. 
 

http://quartata.csb.pitt.edu/
https://www.sciencedirect.com/science/article/pii/S2352396419303123
https://www.sciencedirect.com/science/article/pii/S2352396419303123
https://www.sciencedirect.com/science/article/pii/S2352396419303123
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9. Lee JY, Krieger J, Herguedas B, García-Nafría J, Dutta A, Shaikh SA, Greger IH, Bahar I. (2019) 
Druggability Simulations and X-ray Crystallography Reveal a Ligand-binding Site in the GluA3 AMPA 
Receptor N-terminal Domain. Structure 27: 241-252, PMID: 30528594. 
 
10. Wang K, Steer E, Otero PA, Bateman N, Cheng MH, Scott A, Wu C, Bahar I, Shih Y-T, Hsueh Y-P, 
Chu C (2018) PINK1 Interacts with VCP/p97 and Activates PKA to Promote NSFL1C/p47 Phosphorylation 
and Dendritic Arborization in Neurons. eNeuro 5 (6) ENEURO.0466-18.2018. PMID: 30783609. 
 
11. Van Dijk L, Giladi M, Refaeli B, Hiller R, Cheng MH, Bahar I, Khananshvili D. (2018) Key residues 
controlling bidirectional ion movements in Na+/Ca2+ exchanger. Cell Calcium, 76: 10-22. PMID: 
30248574. 
 
12. Ponzoni L, Zhang S, Cheng MH, Bahar I. (2018) Shared dynamics of LeuT superfamily members and 
allosteric differentiation by structural irregularities and multimerization. Philos Trans R Soc Lond B Biol Sci 
373: 1749 PMID: 29735731 
 
13. Anthonymuthu T, Kenny E, Shrivastava I, Tyurina YY, Hier Z, Ting H-C, Dar H, Tyurin V, Nesterova 
A, Amoscato A, Mikulska-Ruminska K, Rosenbaum J, Mao G, Jinming Z, Conrad M, Kellum J, Wenzel S, 
VanDemark A, Bahar I, Kagan V, Bayir H (2018) Empowerment of 15-lipoxygenase catalytic competence 
in selective oxidation of membrane ETE-PE to ferroptotic death signals, HpETE-PE. J Am Chem Soc 
2018, 140 (51), pp 17835-17839 PMID: 30525572. 
 
14. Liu, B.; Gyori, B.; Thiagarajan, P. S. Statistical Model Checking based analysis of biological networks. 
Automated Reasoning for Systems Biology and Medicine 2019; pp 63-92. 
 
15. Zhang, B.; Li, F.; Chen, Z.; Shrivastava, I. H.; Gasanoff, E. S.; Dagda, R. K. Naja mossambica 
mossambica cobra cardiotoxin targets mitochondria to disrupt mitochondrial membrane structure and 
function. Toxins 2019, 11 (3), 152 
 
16. Lee, J. Y., Krieger, J., Li, H. & Bahar, I. Pharmmaker: Pharmacophore modeling and hit identification 
based on druggability simulations Protein Science, in press (2019). 

Website(s) or other internet site(s):  

(1) http://www.ccbb.pitt.edu/Faculty/bahar 
            Description: main home page 
 

(2) http://prody.csb.pitt.edu/ 
Description: protein dynamics and sequence analysis: including seven modules 
 

(3) http://ignm.ccbb.pitt.edu/   and http://gnm.csb.pitt.edu/ 
Description: GNM online servers 
 

(4) http://anm.csb.pitt.edu/cgi-bin/anm2/anm2.cgi 
Description: ANM online server 
 

(5) http://balestra.csb.pitt.edu/ 
      Descritption: BalestraWeb addresses drug-protein interactions for repurposable drugs. 

         
      (6) http://prody.csb.pitt.edu/drugui/ 
            Descritption: setup and analysis of druggability simulations 
          
Three additional new web servers are being implemented currently and a first alpha version of 
each has been completed. 
    (7) http://rhapsody.csb.pitt.edu/   

http://prody.csb.pitt.edu/
http://ignm.ccbb.pitt.edu/
http://anm.csb.pitt.edu/cgi-bin/anm2/anm2.cgi
http://balestra.csb.pitt.edu/
http://prody.csb.pitt.edu/drugui/
http://rhapsody.csb.pitt.edu/
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Description: pathogenicity prediction of missense variants by taking structural dynamics into 
considerations (version 1) 

    (8) http://quartata.csb.pitt.edu 
Description: in silico chemogenomics methodology and server for linking drugs/chemicals, targets, 
pathways and GO annotations 

    (9) http://quartata.csb.pitt.edu/amdb 
Description: A database and server for searching autophagy modulating drugs/chemicals, targets, 
pathways, in vitro/in vivo experiments, and clinical trials. 

 

Technologies or techniques:  
 

1. We designed a new module Pharmmaker16 (http://prody.csb.pitt.edu/pharmmaker/) for building 
pharmacophore model using outputs of druggability simulations (DruGUI). The pharmacophore 
models can be used for virtual screening of libraries of small molecules. A strong aspect of the 
method is that Pharmmaker uses multiple target conformations dependent on the binding poses 
of probes where they interact during druggability simulations, meaning that the binding score in 
virtual screening can be evaluated in a more realistic manner. Also, we can have multiple 
pharmacophore models with different target conformations and probe poses, which can be 
analyzed statistically. 

2. We Implemented a new module SignDy9 to ProDy API. SignDy calculates the signature dynamics 
of families of proteins that share similar folds, but not necessarily similar sequences. Signature 
dynamics includes shared mode profiles, shared covariance between residue fluctuations, and 
their variations across family members. Additional information can be found in online 
tutorials;(http://prody.csb.pitt.edu/signdy/). 

3. We developed an easy and efficient web server QuartataWeb (http://quartata.csb.pitt.edu) for 
mining known (experimentally verified) and predicted interactions for 5,494 drugs in DrugBank21 
and 315,514 chemicals in STITCH,22 along with the confidence levels of the predicted chemical-
target interactions (CTIs) using a machine learning based model. 

4. We initiated the implementation of Rhapsody (http://rhapsody.csb.pitt.edu/)  for upgraded 
pathogenicity prediction of missense variants by taking structural dynamics into considerations. 

5. significantly advanced the capabilities of ProDy, which currently offers 10+ modules with user-
friendly visualization tools, more than 40,000 code-line, and more than 4,000 pages of 
documentation including manuals and tutorial. ProDy13,14 reached an impressive milestone of 2 
million downloads (http://prody.csb.pitt.edu/statistics/) as of September 2019. 

6. Our database of GNM results, iGNM DB15 (Nucleic Acids Res 44: D415-422; 2016) now covers 
95% of structures available in the PDB (a 5-fold increase compared to earlier version); and its 
improved techniques, libraries and markup language (Ajax, JQuery, HTM5, PHP and Highcharts) 
enhanced its security and interoperability.  

7. Our webserver DynOmics16 (dynomics.pitt.edu) (Nucleic Acids Res 2017) is a portal developed 
to leverage rapidly growing structural proteomics data by efficiently and accurately evaluating the 
dynamics of structurally resolved systems, from individual molecules to large complexes and 
assemblies, in the context of their physiological environment.  

8. Updated web server Balestra17 (http://balestra.csb.pitt.edu/) (Bioinformatics 31:131-3; 2015) 
using the DrugBank version 5. Database architecture (PostgreSQL) has been used for the 
BalestraWeb server to improve the query performance. The searching engine has been improved 
to accept multiple proteins/drugs. We have integrated the protein information from the Uniprot 
database. We have improved the GUI/interface of the input and the output with the integrated 
information of proteins and drugs. The server has been extended to the Stitch database version 4 
using the PostgreSQL database. We are developing the new version of BalestraWeb, which can 
efficiently identify chemicals, targets and pathways for drug abuse and will play an important role 
in discovering the underlying mechanisms and developing corresponding therapeutic strategies. 

9. Implemented DruGUI (http://prody.csb.pitt.edu/drugui/) as a VMD plugin designed for setup and 
analysis of simulations containing small organic molecules (probes) for druggability 
assessment. DruGUI can incorporate a diverse set of molecules from CHARMM General Force 
Field (CGenFF) into simulations. DruGUI is used to i) identify druggable and ligandable sites; ii) 
setup a simulations that contain diverse probe molecules; iii) calculate probe molecule occupancy 

http://quartata.csb.pitt.edu/
http://quartata.csb.pitt.edu/
http://prody.csb.pitt.edu/pharmmaker/
http://prody.csb.pitt.edu/signdy/
http://rhapsody.csb.pitt.edu/
http://prody.csb.pitt.edu/statistics/
http://balestra.csb.pitt.edu/
http://prody.csb.pitt.edu/drugui/
http://www.ks.uiuc.edu/Research/vmd/
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grids; iv) analyze druggability of target protein; and v) perform druggability analysis of specific 
sites. 

10. Our  SMOKE17 (https://liubing1020.github.io/smoke/) is a Statistical MOdel checKing tool for 
Estimating unknown parameters of dynamical models. It can utilize both quantitative data and 
qualitative knowledge for calibrating large models with hundreds of unknown parameters. It was 
originally developed for analyzing ordinary differential equation (ODE) models of biological 
networks, and currently being generalized to other modeling formalisms including stochastic 
models, rule-based models, and hybrid models. 
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CORE C 
 
 

COMPUTATIONAL GENOMICS FOR DRUG ABUSE (CG4DA) 
 

EXECUTIVE SUMMARY 
 

Eric Xing, PhD and Wei Wu PhD 

 
AIMS 
 
Specific Aim 1. To Develop Machine Learning Models and Algorithms for Transcriptome-Wide 
Screening of Expression Traits and Molecular Markers for Drug-Abuse.  
 
Specific Aim 2. To Conduct Genome-Wide Discovery of Drug Targets and Their Epistatic Genetic 
Influences via Structured Association Mapping. 
 
Specific Aim 3. To Develop Software Systems to Facilitate Drug-Abuse Diagnosis, Mechanistic 
Research, and Possibly Guide DA Treatment.  
 
(Specific Aims remain unchanged.)  

 
 

 
ACCOMPLISHMENTS 
 
(a) We have developed new machine learning tools for DA research (Aims 1–3).    
 

i) Many genetic variants have individually smaller effects, but collectively large effects, on 
complex human diseases. These variants are difficult to discover using conventional 
statistical methods. In order to discover such variants associated with alcoholism and 
Alzheimer’s disease, we developed a novel machine learning method called Constrained 
Sparse Linear Mixed Model (CS-LMM) (Aims 1 & 2). Using CS-LMM, we identified multiple 
potential weak but significant SNP variants associated with alcoholism and Alzheimer’s 
disease (AD).  
 

ii) Motivated by the results we observed from the CS-LMM project that some genes are 
associated with both alcoholism and AD), we extended the study to develop a new machine 
learning method Coupled Mixed Model (CMM) that can identify genes that are jointly 
associated with two different types of diseases (Aims 1 & 2). In particular, we are interested 
in identifying the genes that are jointly associated with substance abuse disorder and AD 
by analyzing two independently collected data sets from raw sequence data.  
 

iii) Despite the proliferation of GWAS tools, detecting epistasis is still challenging. One main 
limitation of the existing tools is that they can only model linear association signals in the 
GWAS data. To overcome this challenge, we leverage the power of the deep neural 
networks and developed a tool, namely Deep Mixed Model (DMM), to model arbitrary 
interactions of the data.  

 
iv) Cluster analysis has been employed to detect subtypes of complex diseases which is a 

key task for precision medicine. However, clustering patients based on different 
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sources/types of data (or called multiview data, e.g., clinical, gene expression, and 
proteomic data) can be challenging because different data has its own statistical property 
that is different from other data. Existing approaches that aim to address this problem can 
yield unfavorable results that largely depend on certain types of data when noise or 
redundant variables present in the multiview data. We developed a robust multiple kernel 
k-means clustering approach, called MML-MKKC, and showed that our method can 
robustly identify true clusters when noise or redundant variables are present in multiview 
data. 

 
v) Better understanding how corticosteroids (CSs) use affects asthma patients is important 

for precision treatment of these patients. For this purpose, we analyzed a rigorously 
characterized adult asthma cohort from the Severe Asthma Research Program (SARP), 
and developed a multiview strategy which allows us to identify clusters of the asthma 
subjects with differential response patterns to CS using MML-MKKC. Using this strategy, 
we identified four clusters of patients showing differential response patterns among the 
asthma patients; our clusters were validated using an independent SARP test set. 

      
     These machine learning tools will provide state-of-the-art and powerful resources for DA research.  
 
(b) Continued existing collaborations and newly initiated ones with NIDA/NIH-funded research 
projects (FRPs) on genome-wide screening of expression traits, and molecular and clinical markers 
for drug abuse (DA), other neurological diseases (e.g., AD), and diseases related to DA (e.g., 
asthma). As we proposed in Aims 1–3, we have applied our newly developed machine learning 
models and algorithms technologies to support the FRPs. These projects are listed below. 

 
Collaborations: 
 

1) We have continued to support the research of the PI Dr. Michael Vanyukov (who is 
a consultant and the PI of the neurogenetics module of FRP1 on Core C (CG4DA) and 
is also the Scientific Director of the Center for Education and Drug Abuse Research 
(CEDAR) at U Pitt, supported by FRP1) and help identify genome-wide genetic targets 
for patients with substance abuse disorders.  Dr. Vanyukov is the PI of one of the 
FRPs listed in our funded P30 Center grant application.  

 
2) We have continued to support the research of the PI Dr. Oscar Lopez (Professor of 

Neurology and Psychiatry, Director of Alzheimer’s Disease Research Center, 
University of Pittsburgh) and help identify genome-wide genetic targets and molecular 
markers for patients with Alzheimer's disease (AD).  Dr. Lopez is the PI of one of the 
FRPs listed in our funded P30 Center grant application.  

 
3) We have continued to support the research of the PI Dr. Sally Wenzel (Professor of 

Medicine and Immunology, Pulmonary Medicine, Department Chair of Environmental 
and Occupational Health, Director of University of Pittsburgh Asthma Institute at 
UPMC/UPSOM, and UPMC Chair of Translational Airway Biology) and help identify 
response patterns to CSs among asthma patients. Dr. Wenzel is also the PI of one of 
the FRPs listed in our funded P30 Center grant application. 

 
 
 
 
 
 

 



95 

 

(c)  RESEARCH HIGHLIGHTS & SIGNIFICANT RESULTS (major findings, developments or 
conclusions) 
 
Core Technology Development (Aims 1–3): 
 

1. Discovering Weaker Genetic Associations Guided by Known Associations (Wang, et 
al, BMC Medical Genetics 2019). 

The vast amount of genomic data has increased the possibility of discovering new genome-
phenotype associations with statistical methods. Following the lead of traditional statistical 
methods like hypothesis testing, many advanced machine learning methods have been 
proposed which intent to increase the statistical power by incorporating a variety sources of 
prior knowledge to the models. However, these methods barely consider the prior knowledge 
of validated associations, which results in the following limitations of the current association 
studies: 1) A majority of the newly discovered genetic variants associated with a disease are 
known variants; and 2) as the validated/known variants have larger effect sizes than other 
variants with weaker association, the former are easier to discover; as such, much effort has 
been wasted on discovering the same (known) variants. 
 
We propose a computational approach CS-LMM that uses the knowledge of validated 
associations to increase the power of discovery of genetic variants (Wang, et al, BMC Medical 
Genetics 2019). Therefore, statistically, since the searching is conditioned on validated 
associations with large effect sizes, the weaker signals will be easier to be uncovered. 
Moreover, the discovered genetic variants will not overlap largely on what is already known. 
Our simulation experiments show that CS-LMM outperforms other methods in terms of 
discovering genetic variants with smaller effect sizes. We applied our method to an alcoholism 
SNP dataset provided by our collaborator Dr. Michael Vanyukov as well as an Alzheimer SNP 
dataset, and identified a dozen promising genetic variants potentially associating with drug 
abuse disorders as well as Alzheimer’s. 
 

 
2. Coupled Mixed Model for Joint Genetic Analysis of Complex Disorders with Two 

Independently Collected Data Sets. 
 
Genome-wide Association studies (GWASs) have contributed to decoding the human genome 
by uncovering many genetic variations associated with various diseases. Many follow-up 
investigations involve joint analysis of multiple independently generated GWAS data sets. 
While most of the computational approaches developed for joint analysis are based on 
summary statistics, the joint analysis based on individual-level data with consideration of 
confounding factors remains to be a challenge. We developed a method, called Coupled 
Mixed Model (CMM), that enables a joint GWAS analysis on two independently collected sets 
of GWAS data with different phenotypes. The CMM method does not require the data sets to 
have the same phenotypes as it aims to infer the unknown phenotypes using a set of 
multivariate sparse mixed models. Moreover, CMM addresses the confounding variables due 
to population stratification, family structures, and cryptic relatedness, as well as those arising 
during data collection such as batch effects that frequently appear in joint genetic studies. We 
evaluate the performance of CMM using simulation experiments, and our method consistently 
outperforms the competing methods, as shown in Figure 1 (Aims 1 & 2). 
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3. Deep Mixed Model for Marginal Epistasis Detection and Population Stratification Correction 

in Genome-Wide Association Studies (Wang, et al, BMC Bioinformatics 2019). 
 

Following the previous study of detecting marginal epistasis signals, and motivated by the 
universal approximation power of deep learning, we propose a neural network method that can 
potentially model arbitrary interactions between SNPs in genetic association studies as an 
extension to the mixed models in correcting confounding factors. Our method, namely Deep 

 
Figure 1. Empirical performance of CMM in comparison to other popular methods in simulation 
experiments. 

 

 
Figure 2. Investigation of the internal working mechanism of DMM. 



97 

 

Mixed Model, consists of two components: 1) a confounding factor correction component, which 
is a large-kernel convolution neural network that focuses on calibrating the residual phenotypes 
by removing factors such as population stratification, and 2) a fixed-effect estimation component, 
which mainly consists of an Long-short Term Memory (LSTM) model that estimates the 
association effect size of SNPs with the residual phenotype. With simulations, we demonstrate 
the superior performance over the existing methods. We also investigate the internal working 
mechanism of our proposed DMM (as shown in Figure 2). Our investigation suggests that DMM 
does not only achieve good end-performance, but also behave as we expected in intermediate 
steps.  

 
4. Robust Multiple Kernel k-means Clustering using Min-Max Optimization (Wu, et al, 

AJRCCM 2019). 
 

Integrating diverse modalities is challenging because data from different sources (also called 
views) have different statistical properties. To address this problem, multiple kernel learning uses 
view-specific kernels to capture diverse patterns of multiple views. While supervised multiple 
kernel learning has been extensively studied, only a few unsupervised approaches have been 
proposed until recently, among which, multiple kernel k-means clustering is one of  

the commonly used approaches. Existing works employ a minH-minθ (or maxH-maxθ) framework, 
in which they first find a combination of views that reveals small within-cluster variance, and then 
find clusters by minimizing such variance. However, noise or redundant variables can make the 
existing multiple kernel clustering approaches yield unfavorable clusters. In particular, the minH-
minθ framework makes these methods ignore the views with compromised signals and find 
clusters that are largely determined by other views.  
 
To address this problem, we propose a multiple kernel clustering method with the minH-maxθ 
framework (MML-MKKC) that aims to be robust to the noise and redundant variables. Our 
simulation results show that our method is more robust to noise (Figure 3a) or redundant (Figure 
3b) features than other compared methods. Our method outperforms the compared existing 
multiple kernel clustering methods and yields clusters by making good use of all views, including 
the view with the noise or redundant variables. 

 
  
 

(a) 

 
(b) 

 
Figure 3: Clustering performance. Adjusted Rand Index (AdjRI) 
versus (a) the number of noise variables and (b) the number of 
redundant variables added to one of the views are plotted. The 
identified clusters are compared to the true clusters. 
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Figure 3: Clustering performance. AdjRI versus the number of the noise (A–C) or redundant variables (D–F, cor = 0.90) added to view 1.
The identified clusters are compared to the true clusters.
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Figure 4: Clustering results of (A) A-Noise with three noise variables and (B) B-Redun with three redundant variables and cor = 0.7. The
heatmaps at the top panel illustrate the two-view data where the rows and columns represent variables and samples, respectively. The tile
plots at the bottom panel illustrate the clustering results. Thefirst tile plot shows the ground truth; the second to the last plots show results of
the methods. Identified clusters are labeled in different colors.

suggests that they identify clusters mainly based on View 2
that is not perturbed. For further results, see TableS1– S6.

5 Real data analysis

With the advent of various genome-wide technologies, a
wide array of biomedical data has been available, which in-
cludes clinical characteristics, DNA copy number, and gene
expression profiling. They contain complementary informa-
tion that can together provide a comprehensive understand-
ing and novel insight into biomedical problems. In this sec-
tion, wepresent application of our method to two biomedical
problems–one is to identify cancer subtypes, and theother is
to identify patients’ response patterns to asthma treatment,
which demonstrates the utility of our method on real-world
problems.

5.1 Identification of cancer subtype

We compared our method with other methods using two
TCGA multi-omics cancer datasets. Each dataset includes
468 patients with human breast invasivecarcinoma (BRCA)
and 251 patients with glioblastoma multiforme (GBM), re-
spectively (Weinstein et al. 2013). BRCA has three views:
mRNA sequencings, miRNA sequencings, and copy num-
ber variations. GBM also has three views: gene expression
microarray profiling, copy number variation, and methyla-
tion data. A radial basis function kernel isused for all views

as suggested by Lanckriet et al. (2004b). See Text S3 for
details about data preprocessing.

Since there isno ground-truth subtype, wecompared clin-
ical properties of identified clusters that are observed inde-
pendently from data and examined how distinct they are.
In BRCA, we compared the AJCC neoplasm disease stage
(which describes the extent of both malignant and benign
growths). In GBM, we compared the survival time (days
to death) and the Karnofsky performance score (a patient’s
prognosis by measuring apatient’sability to function).

Further, to help understand biological mechanisms un-
derlying the clusters, we identified differentially expressed
genes (DEGs) for each cluster. We used RNA sequencing
data for BRCA and gene expression microarray data for
GBM and performed the two-sample t-test. The p-values
are adjusted using a Benjamini-Hochberg procedure to ad-
dress multiple hypothesis testing problems (Benjamini and
Hochberg 1995). We performed gene set enrichment analy-
sis (Subramanian et al. 2005) to find out the KEGG path-
ways enriched among the DEGs in each cluster. Then,
we compared these enriched pathways with the BRCA- or
GBM-related biological pathways provided by the KEGG
Pathway Database (https://www.kegg.jp) that aredefined in-
dependently from data (See Table S7).

Results: For BRCA, we identified five clusters (92, 86,
83, 137, and 70 subjects for each cluster) using each meth-
ods. Table 1 shows that our method identified clusters that
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wide array of biomedical data has been available, which in-
cludes clinical characteristics, DNA copy number, and gene
expression profiling. They contain complementary informa-
tion that can together provide a comprehensive understand-
ing and novel insight into biomedical problems. In this sec-
tion, wepresent application of our method to two biomedical
problems–one is to identify cancer subtypes, and theother is
to identify patients’ response patterns to asthma treatment,
which demonstrates the utility of our method on real-world
problems.

5.1 Identification of cancer subtype

We compared our method with other methods using two
TCGA multi-omics cancer datasets. Each dataset includes
468 patients with human breast invasivecarcinoma (BRCA)
and 251 patients with glioblastoma multiforme (GBM), re-
spectively (Weinstein et al. 2013). BRCA has three views:
mRNA sequencings, miRNA sequencings, and copy num-
ber variations. GBM also has three views: gene expression
microarray profiling, copy number variation, and methyla-
tion data. A radial basis function kernel is used for all views

as suggested by Lanckriet et al. (2004b). See Text S3 for
details about data preprocessing.

Since there isno ground-truth subtype, wecompared clin-
ical properties of identified clusters that are observed inde-
pendently from data and examined how distinct they are.
In BRCA, we compared the AJCC neoplasm disease stage
(which describes the extent of both malignant and benign
growths). In GBM, we compared the survival time (days
to death) and the Karnofsky performance score (a patient’s
prognosis by measuring apatient’sability to function).

Further, to help understand biological mechanisms un-
derlying the clusters, we identified differentially expressed
genes (DEGs) for each cluster. We used RNA sequencing
data for BRCA and gene expression microarray data for
GBM and performed the two-sample t-test. The p-values
are adjusted using a Benjamini-Hochberg procedure to ad-
dress multiple hypothesis testing problems (Benjamini and
Hochberg 1995). We performed gene set enrichment analy-
sis (Subramanian et al. 2005) to find out the KEGG path-
ways enriched among the DEGs in each cluster. Then,
we compared these enriched pathways with the BRCA- or
GBM-related biological pathways provided by the KEGG
Pathway Database (https://www.kegg.jp) that aredefined in-
dependently from data (See Table S7).

Results: For BRCA, we identified five clusters (92, 86,
83, 137, and 70 subjects for each cluster) using each meth-
ods. Table 1 shows that our method identified clusters that



98 

 

5. Multiview Clustering Analysis for Identifying Variable Corticosteroid Response Phenotypes 
in Severe Asthma (Wu, et al, AJRCCM 2019). 

 
Corticosteroids (CSs) are the most effective asthma therapy, but responses are heterogeneous 
and systemic CSs lead to long-term side effects. Therefore, an improved understanding of the 
contributing factors in CS responses could enhance precision management. Although several 
factors have been associated with CS responsiveness, no integrated/cluster approach has yet 
been undertaken to identify differential CS responses.  
 
In order to help understand differential CS responsiveness among subjects with asthma, we 
developed a multiview strategy (Figure 4) which allows us to identify clusters of asthma subjects 
with differential response patterns to CS by i) incorporating different types of variables, including 
both baseline and change variables, into the cluster analysis; and ii) assigning variables into 
different views based on their clinical importance. We applied our method MML-MKKC using the 
three-view strategy to a rigorously characterized adult asthma cohort from the National Institutes 
Heart Lung and Blood Institutes’ Severe Asthma Research Program (SARP). The patients in this 
cohort were studied before and after a standardized systemic CS treatment to characterize their 
responses. 

 

 
 
We identified four asthma clusters with differential CS responses among 346 asthma patients. The 
newly identified clusters are validated/replicated using an independent SARP test set. These findings 
give insight into clinical, biologic and physiologic determinants of CS response patterns that could be 
mechanistically utilized to better link molecular to clinical responses. 
 
Collaborations with FRPs/Pilot  (Aims 1-3): 
 
(1) Genome-wide association analysis of alcoholism data (collaboration with Dr. Michael 

Vanyukov) 

To help support Dr. Michael Vanyukov’s research, we applied our method CS-LMM to a 
alcoholism dataset collected from the Center for Education and Drug Abuse Research (CEDAR) at 
U Pitt. There are 519,138 SNPs collected from 383 subjects with and without drug abuse disorders 
in this dataset. 
 
Key outcomes/Achievements: 
 

 
Figure 4. Three-view strategy for identifying variable CS response phenotypes in SARP. The 100 clinical, 
physiological, inflammatory, and demographic variables from 346 adult participants with asthma in SARP 
with paired (before and after CS use) sputum data are divided into three views. 
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• The variables were assigned to three different views. 

AJRCCM, Wu et al. 2019  

The three view scenario 
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SNPs associated with alcoholism (Wang, et al, BMC Medical Genetics 2019). Using CS-LMM, we 
identified multiple SNPs associated with drug abuse disorders, of which, the top 20 SNPs associated 
with alcoholism are shown in Table 1. It can be seen that many of them are in the region of gene 
ALDH3A2, which is a known gene involved in alcohol metabolism and associated with smoking 
cessation behavior.  ENOX1 is also known to be associated with nicotine dependence. 
 

(2) Genome-wide association analysis of late-onset Alzheimer’s disease data (collaboration 

with Dr. Oscar Lopez) 

To help support Dr. Lopez’s research, we applied our method CS-LMM to a late-onset 
Alzheimer’s disease (AD) dataset from Harvard Brain Tissue Resource Center and Merck 
Research Laboratories in an attempt to detect causal SNPs associated with AD. This dataset contains 
555,091 SNPs obtained from 270 AD cases and 270 controls (non-demented subjects).  
 

Key outcomes/Achievements: 
 
We identified SNPs associated with Alzheimer’s disease, some of which suggest a potential 

link between AD and drug abuse disorders (Wang, et al, BMC Medical Genetics 2019). Using 
CS-LMM, we identified multiple SNPs associated with AD, of which, the top 15 novel SNPs associated 
with AD are shown in Table 2. Interestingly, our literature survey suggests that several SNPs in Table 
2 are previously known associated with alcoholism.  
 
(3) Genome-wide association analysis of both drug abuse disorder and Alzheimer’s disease. 

(collaboration with Drs. Michael Vanyukov and Oscar Lopez) 

SNP gene Chromosome SNP gene chromosome 
rs1789891 ADH1B 4 rs12482570 KCNJ6 21 
rs7590720 PECR 2 rs857975 KCNJ6 21 
rs2835872 KCNJ6 21 rs4147544 ADH6 4 
rs4478858 SERINC2 1 rs702860 KCNJ6 21 
rs1789924 ADH1C 4 rs2835853 KCNJ6 21 
rs698 ADH1C 4 rs717859 KCNJ6 21 
rs2851300 

 
4 rs11499823 ADH1C 4 

rs10483038 KCNJ6 21 rs2835910 KCNJ6 21 
rs1344694 PECR 2 rs4355398  4 
rs4147536 ADH1B 4 rs2835831 ADH6 4 

Table 1: The top 20 SNPs discovered by CS-LMM. The top four SNPs (shown in 
bold) are the ones that are built into the model to help discover weaker signals. The 
rest 17 SNPs are novel SNPs associated with alcoholism we discovered using CS-
LMM.  

SNP gene chromosome SNP gene chromosome 
rs2075650 APOE 19 rs12131508 SLC35F3 1 
rs157580 TOMM40 19 rs12506821  4 
rs10027926 RGS12 4 rs11485175  1 
rs12641989 RGS12 4 rs584507 PRKCQ 10 
rs3088231 RGS12 4 rs12563692 ESRRG 1 
rs10512523 ABCA9 17 rs6446731  4 
rs4076949 SLC35F3 1 rs7984051  13 
rs874418 HGFAC 4 rs2327771 ISM1 20 
rs6842419 DOK7 4 rs7548651 SLC35F3 1 
rs16844383 HGFAC 4 rs4330674 WISP1 8 

Table 2: The top 20 SNPs associated with AD discovered by CS-LMM. The top 
two SNPs (shown in bold) are the ones that are built into the model to help 
discover weaker signals. The rest 18 SNPs are novel SNPs associated with AD.  
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To help support Drs. Michael Vanyukov’s and Lopez’s research, we applied our method CMM 
for a joint study of substance abuse disorder (SUD) and Alzheimer’s disease. Our results show 
that our method the CMM can identify several interesting markers that are jointly associated with both 
diseases. 
 

Key outcomes/Achievements: 
 
We identify five SNPs that are jointly associated with SUD and Alzheimer’s disease. 
 

SNP SUD rank AD rank Chr. Chr. Position Gene 
rs2131691 1 1 11 26574855 ANO3 
rs1709317 5 8 2 23536638 KLHL29 
rs4713797 6 10 6 34490756 PASCIN1 
rs224534 12 3 17 3583408 TRPV1 

rs1057744 16 11 14 105150705 JAG2 

Table 3. SNPs identified to be jointly associated with SUD and Alzheimer’s disease. 
 
Table 3 shows the SNPs that our CMM identified to be jointly associated with both SUD and 
Alzheimer’s disease. Interestingly, one of the SNPs reside in TRPV1, which is a gene that is predicted 
independently by the Core B members to be related to drug abuse.  
 
(4) Multiview clustering analysis of Asthma treatment responsiveness. (collaboration with Dr. 

Sally Wenzel) 

To help support Dr. Wenzel’s research, we applied our method MML-MKKC to an asthma 

clinical dataset collected from the participants in Severe Asthma Research Program (SARP) 

(provided by Dr. Wenzel). There are 346 asthma patients and 100 clinical, physiologic, inflammatory, 

and demographic variables in this dataset. Our results show that our method MML-MKKC identified 

four response patterns of asthma patients to corticosteroids (CSs). 

Key outcomes/Achievements: 
 
We identified four response patterns of asthma patients to CSs (Wu, et al, AJRCCM 2019). 
Figure 5 shows the four asthma clusters with different CS responses among 346 asthma patients. 
Clusters 1 and 2 consisted of young, modestly CS-responsive individuals with allergic asthma and 
relatively normal lung function, separated by contrasting sputum neutrophil and macrophage 
percentages after CS treatment. The subjects in cluster 3 had late-onset asthma and low lung 
function, high baseline eosinophilia, and the greatest CS responsiveness. Cluster 4 consisted 
primarily of young, obese females with severe airflow limitation, little eosinophilic inflammation, and 
the least CS responsiveness. The top 12 baseline variables were identified, and the clusters were 
validated using an independent SARP test set. These findings give insight into clinical, biologic and 
physiologic determinants of CS response patterns that could be mechanistically utilized to better link 
molecular to clinical responses. 
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RESULTS DISSEMINATED TO COMMUNITIES OF INTEREST  

(1) Presentations and posters were presented in annual society meetings 
 

1. Wang H, Wu Z, Xing EP. Removing Confounding Factors Associated Weights in Deep Neural 
Networks Improves the Prediction Accuracy for Healthcare Applications. Oral Presentation in 
Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing 2019. 
 

2. Wang H, Liu X, Tao Y, Ye W, Jin Q, Cohen WW, Xing EP. Automatic Human-like Mining and 
Constructing Reliable Genetic Association Database with Deep Reinforcement Learning. 
Poster presentation in Pacific Symposium on Biocomputing. Pacific Symposium on 
Biocomputing 2019.  

 
(2) Invited Talks 
 

1. Broad Institute Next Generation in Biomedicine Symposium (Boston, MA, USA) 
Sept. 9, 2019 
 
Talk title: “Dealing with Confounding Factors in Deep Learning” presented by Haohan Wang 
(Carnegie Mellon University, USA)  

 
2. Department of Biomedical Informatics Colloquium Series (Pittsburgh, PA, USA) 

Sept. 6, 2019 
 
Talk title: “Deep Learning over Heterogeneous Data: a challenge, a solution, and an 
application to Poly(A) signal prediction” presented by Haohan Wang (Carnegie Mellon 
University, USA)  

 
 

 

 

 
 

Figure 5: Heatmap of the four clusters identified among the 346 patients by 
the MML-MKKC method. Rows represent the patients and columns 
represent variables in each view. 

Figure 1. Heatmap of the four clusters identified among the 346 patients by the MKKC method. 

Rows represent the patients and columns represent variables in each view (see an ordered list of 

variables in S1 Table). 
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PRODUCTS 
 
Publications 
 

12. Wu X, Xie S, Wang L, Fan P, Ge S, Xie XQ, Wu W*. A computational strategy for finding novel 
targets and therapeutic compounds for opioid dependence. PLoS One. 2018 Nov 
7;13(11):e0207027. doi: 10.1371/journal.pone.0207027. eCollection 2018. PMID:30403753. 
PMCID: PMC6221321. 

13. Bertholomey ML, Stone K, Lam TT, Bang S, Wu W, Nairn AC, Taylor JR, Torregrossa MM*. 
Phosphoproteomic analysis of the amygdala response to adolescent glucocorticoid exposure 
reveals G-protein coupled receptor kinase 2 as a target for reducing motivation for alcohol. 
Proteomes. 2018 Oct 12;6(4). pii: E41. doi: 10.3390/proteomes6040041. PMID:30322021. 
PMCID: PMC6313880. 

14. Wang H, Lengerich BJ, Aragam B, Xing EP. Precision Lasso: accounting for correlations and 
linear dependencies in high-dimensional genomic data. Bioinformatics. 2018 Sep 
1;35(7):1181-7. 

15. Wang H, Aragam B, Xing EP. Variable selection in heterogeneous datasets: A truncated-rank 
sparse linear mixed model with applications to genome-wide association studies. Methods. 
2018 Aug 1;145:2-9. 

16. Wang H, Liu X, Xiao Y, Xu M, Xing EP. Multiplex confounding factor correction for genomic 
association mapping with squared sparse linear mixed model. Methods. 2018. 

17. Marchetti-Bowick M, Yu Y, Wu W, Xing EP*. A penalized regression model for the joint 
estimation of eQTL associations and gene network structure. The Annals of Applied Statistics. 
2019;13(1):248-70. 

18. Wang H, Wu Z, Xing EP. Removing Confounding Factors Associated Weights in Deep Neural 
Networks Improves the Prediction Accuracy for Healthcare Applications. In Pacific 
Symposium on Biocomputing. Pacific Symposium on Biocomputing 2019 (Vol. 24, p. 54). NIH 
Public Access. 

19. Wang H, Liu X, Tao Y, Ye W, Jin Q, Cohen WW, Xing EP. Automatic Human-like Mining and 
Constructing Reliable Genetic Association Database with Deep Reinforcement Learning. 
InPacific Symposium on Biocomputing. Pacific Symposium on Biocomputing 2019 (Vol. 24, 
pp. 112-123). NIH Public Access. 

20. Wang H, Yue T, Yang Y, Wu W, Xing EP. Deep Mixed Model for Marginal Epistasis Detection 
and Population Stratification Correction in Genome-Wide Association Studies, BMC 
Bioinformatics. Accepted.  

21. Wang H. Vanyukov MM, Xing EP, Wu W. Discovering Weaker Genetic Associations Guided 
by Known Associations, BMC Medical Genetics. Accepted. 

22. Wang H. Lu C. Wu W. Xing EP, Graph-structured Sparse Mixed Models for Genetic 
Association with Confounding Factors Correction, BIBM 2019.  

23. Wang H, Pei F, Vanyukov MM, Bahar I, Wu W, Xing EP. Coupled Mixed Model for joint genetic 
analysis of complex disorders from independently collected data sets: application to 
Alzheimer's disease and substance use disorder. Submitted to Bioinformatics. 
(https://www.biorxiv.org/content/10.1101/336727v2.article-metrics) 

24. Wu W, Bang S, Bleecker ER, Castro M, Denlinger L, Erzurum SC, Fahy JV, Fitzpatrick AM, 
Gaston BM, Hastie AT, Israel E, Jarjour NN, Levy BD, Mauger DT, Meyers DA, Moore WC, 
Peters M, Phillips BR, Phipatanakul W, Sorkness RL, Wenzel SE. Multiview Cluster Analysis 
Identifies Variable Corticosteroid Response Phenotypes in Severe Asthma. American Journal 
of Respiratory and Critical Care Medicine 2019 Jun 1;199(11):1358-1367. 

25. Bang S, Yu Y, Wu W. Robust Multiple Kernel k-means Clustering using Min-Max Optimization. 
Submitted to the AAAI conference. 
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Technologies or Techniques 
 

 

 

GenAMap: An Visual Analytics Software Platform for 
eQTL and GWAS Analysis.  
https://github.com/blengerich/GenAMap 

 

Precision Lasso: Accounting for Correlations and Linear 
Dependencies in High-Dimensional Genomic Data.  
https://github.com/HaohanWang/thePrecisionLasso 

 

CS-LMM: Discovering Weaker Genetic Associations 
with Validated Association. 
https://github.com/HaohanWang/CS-LMM 

 

Deep Mixed Model: Marginal Epistasis Detection and 
Population Stratification Correction in Genome-Wide 
Association Studies 
https://github.com/HaohanWang/DMM 

 

MKKC: An R-package For Multiple Kernel K-means 
Clustering. 
https://seojinbang.github.io/MKKC/ 
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EXECUTIVE SUMMARY 
 
Xiang-Qun Xie, PhD,MBA 
Ivet Bahar, PhD 
Eric Xing PhD 

 
AIMS 
 

Specific Aim 1. To support new P/FPs and identify other promising P/FPs for incorporation into 
CDAR.  

Specific Aim 2. To support the success of P/FPs in their research and their efforts for securing 
funding, and their promotion to FRP status.  

Specific Aim 3. To continue building a network that integrates experimental and computational 
DA researchers locally and nationwide 

 

ACCOMPLISHMENTS 
 

During the first funding cycle, our P/F program has supported 7 pilot projects on DA research, which has 
led to 18 publications1-18 (Table 1). The P/F program has recruited two early-stage investigators new to 
DA research: Dr. Zhiwei Feng, Assistant Professor at Pitt-SOP and Dr. Junmei Wang, Associate Professor 
at Pitt-SOP. They are now key personnel (Core A Co-I and co-PI/Coordinator, respectively) in the 
proposed new funding cycle of CDAR. Through the P/F program, CDAR also worked closely to help seven 
junior faculty on nine funding applications (Table 2). Among them, Drs. V. Blair Journigan and Zachary 
Freyberg are PIs of new P/F projects (P/FPs) in the new term. The comprehensive support provided by 
CDAR to early-stage investigators facilitates their long-term research in the DA field. As a successful 
example, an R01 grant has been awarded to Dr. Torregrossa, the PI of a previous P/FP, to continue her 
study on cocaine addiction. In addition, the Center was successful recruiting and supporting 
underrepresented minorities. We have supported Dr. Hernandez (Hispanic, female) for an Alzheimer’s 
Association Fellowship application, Dr. Torregrossa (female) for her R01 grant application, and Dr. 
Journigan (female) for her K01 grant application (Table 2). The Center also has a good representation of 
female investigators as PI, Co-I, and Coordinator (Bahar, Wu, and Cheng) as well as FRP PIs.   
 

Table 1. Accomplishments of CDAR P/FPs in the First Funding Cycle 
Investigator 
(Affiliation) 

Project Title Publication 

Peng Yang (Pitt) Designing novel functional chemical probes with high cannabinoid receptor CB1/CB2 
selectivity and specificity as probes for studying of cannabinoid related pathways 

1-10 

Mingfeng Bai (Pitt) Development of CB2 receptor (CB2R)-targeted theranostic PET agent for brain cancer 
research 

11 

Yong Wan 
(Northwestern) 

Targeting the interplay between KLF4 and PRMT5 in carcinogenesis 12-14 

Youhua Liu (Pitt) Targeted inhibition of the type 2 cannabinoid receptor 15 

Min Xu (CMU) Development of deep learning-based subdivision approach for large scale 
macromolecules structure recovery from electron cryo tomograms 

16-17 

Mary Torregrossa 
(Pitt) 

Identification of key proteins in substance addition pathways as drug targets for 
potential treatment 

18 

Inmaculada 
Hernandez (Pitt) 

Patient and system-level predictors of adherence to oral anticoagulation - 
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Table 2. Grants Involving Early-Stage Investigators Supported by the CDAR P/F Program 
Investigator 
(Affiliation) 

Grant Title (Funding Source) Status 

Mary Torregrossa (Pitt) Mechanisms Regulating Cocaine Memory Strength (NIDA R01DA042029)  Awarded 

Inmaculada Hernandez 
(Pitt) 

Claims Data Mining to Predict Side Effects of Anti-dementia Drugs (Alzheimer’s 
Association AARGD-17-500234)  

Awarded 

Patient, Systems-Level Determinants of Oral Anticoagulation in Atrial Fibrillation 
(NHLBI K01HL142847) 

Awarded 

Lirong Wang (Pitt) Chemogenomics Systems Pharmacology Approach for TBI and AD Research 
(Department of Defense W81XWH-16-1-049) 

Awarded  

Synaptic Resilience to Psychosis in Alzheimer Disease (NIME R01MH116046) Awarded 

V. Blair Journigan 
(Marshall University) 

Somatosensory-targeting Probes for Neuropathic Pain (NIH K01) Pending 

Zachary Freyberg (Pitt) A Multidisciplinary Approach to Decipher Dopamine D2R Signaling (NIH R35) Pending 

Bing Liu (Pitt) New Therapies for Liver Fibrosis and Hyperproliferation in Alpha1-AT Deficiency 
(NIDDK P01DK096990) 

Awarded 

Signature Directed Sequential Delivery of Small Molecule Radiation Mitigators 
and Probiotics (NIAID P01) 

Pending 

    
P/FPs Selected for the New Funding Cycle  

We have already identified five P/FPs for the new funding cycle (Table 3.), with priority for those PIs from 
underrepresented racial and ethnic groups. We provide details on the PIs, their career status, and an 
overview of their research goals, and how they will interact with and benefit from interactions with CDAR 
investigators. 

Table 3. P/FPs Selected for the New Funding Cycle. 
P/FP Investigator (Affiliation) Grant Title Cores 

1 Ying Xue (Pitt) Substance use disorder risk stratification by machine learning algorithms 
and Bayesian causal network models 

A, C 

2 V. Blair Journigan (Marshall 
U) 

Novel ligands for TRPM8 menthol receptor for smoking cessation A, B 

3 Zachary Freyberg (Pitt) Direct visualization of morphological and structural alterations in 
dopamine neurons caused by drugs of abuse 

B, C 

4 Min Xu (CMU) Developing deep learning approaches for analyzing Cryo-EM imaging 
data for drug abuse research 

C, B 

5 Scott Malec (Pitt)  
 

Literature-based discovery informing graphical causal modeling for drug 
repurposing 

A 

 

We here use two examples of F/FPs to demonstrate how the P/FPs can benefit from CDAR center   

P/FP1: “Substance use disorder risk stratification by machine learning (ML) algorithms and 
Bayesian causal network models” (Ying Xue, PhD, Assistant Professor, School of Pharmacy, Pitt) 

Specific Aims. Dr. Xue is a new investigator at Pitt, School of Pharmacy, with research focus on 
substance use disorder (SUD) risk stratification. The objective of this proposal is to address the role of 
individual clinical characteristics and other factors on SUD. Specifically, Dr. Xue will apply Bayesian 
models to identify key relationships and combination of factors, which can be further used to assess the 
probabilistic risk of SUD given demographic factors and comorbid conditions. She will also quantify to 
what extent the factors’ variation observed in individuals is attributable to SUD. The project will benefit 
from the support of Cores A and C and will focus on evaluating time-invariant and time-varying factors 
including demographics, clinical data, region of residence and psychotic experiences that relate to the 
development of SUD over time. By doing so, the P/FP PI and Core A in conjunction with Core C will 
leverage the richness of causal networks to identify causal relationships between different factors and 
SUDs. Building on the results from Bayesian causal networks, the P/FP PI will further develop an algorithm 
to identify patients with high risk of SUD. To achieve this goal, two specific aims are proposed below: 

Aim 1: To characterize the causal relationships between time-invariant and time-varying patients- and 
system-level factors among SUD patients. 

Aim 2: To develop ML algorithms for estimating the individual risk of SUD as well as expected future 
healthcare utilization. 
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Background and Significance. SUD remains an increasing global public health concern, resulting in 
substantial socioeconomic burden. A recent report from the NIDA states that the annual cost from 
substance abuse in the United States, related to healthcare, crime, and reduced productivity exceeds 
$700 billion. More than that, SUD has been listed among the top ten non-genetic causes of death (source: 
https://www.drugabuse.gov). Although, significant academic and health risks associated with SUD have 
been well recognized, the development of systematic approaches for disease management in population 
with SUD has been hampered by the limited knowledge of disease/disorder mechanics compared to other 
diseases/conditions such as cancer and heart disease. As a result, identifying which factors are most 
robustly linked to SUD is critical for SUD prevention and effective interventions design.  

The ability to develop effective models for SUD management is limited by substantial evidence gaps that 
this pilot project proposes to addresses: (1) While there is extensive literature reporting the comorbidities 
and impact on SUD, it should be noticed that most of the work has been done using regression modeling 
and clustering, and these methods suffer from limitations with respect to their ability to codify complex 
nonlinear relationships, ingest and model large sample sizes, and provide transparent outputs to users. 
(2) Prediction of substance misuse patterns is still lacking owing to the large number and inter-correlation 
of predictors along with their changing salience during development (time-varying factors), in other words, 
the strength of those association may change over time. Hence, we will develop more powerful analytic 
methods that have the potential to address the current shortcomings in exploring the inherent complexity 
of comorbidities in SUD population toward developing an individualized model of risk stratification. 

Preliminary Work. In our previous research, we used ML algorithms to determine the accuracy of 
forecasting SUD based on psychological characteristics of children and adolescents (Figure 1). 
Longitudinal data (N = 700) from the Center for Education and Drug Abuse Research was analyzed at 
baseline and subsequent follow-ups for predicting SUD. From a pool of approximately 1000 questionnaire 
items, ML feature selection techniques, which are data-driven and free of any assumption or investigator 
bias, were adopted to select 30 psychological questionnaire items which best predicted SUD. These items 
were further used to predict the particular substance use severity (SUS) trajectory during adolescence 
and early adulthood. The ROC AUCs of the ML models for predicting SUD at different ages are 0.74 at 
ages 10-12 and 12-14, and progressively increased to 0.78, 0.83, and 0.86 at the respective ages 16, 19, 
and 22 (Figure 1). ML methodology is heuristic for delineating and scaling the vulnerability characteristics 
associated with SUD liability as well as developing liability measurement tools to inform targeted 
prevention. 

 
Figure 1 Random forest with feature selection predicted the SUB liability among children and adolescents. 

Computations and Benefits from the CDAR Center. The proposed P/F research will benefit from Cores 
A and C through the following collaboration: (i) to identify what patient characteristics are causally 
associated with SUD overtime, the P/FP PI will build on the experience of Core C in building Bayesian 
networks. These advanced models will enable us to develop Markov chains capturing the causal 
relationship between patient time-invariant characteristics, such as race or gender, system-level 
characteristics including region of residence, time-varying factors such as psychotic experiences (auditory 
and visual hallucinations, and five delusions) overtime. (ii) Building on the results from these models and 
on the experience of trajectory analysis in Core A, the P/FP PI will develop an algorithm to predict patients 
at highest risk of SUD. 
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Experimental Validations by P/FP Investigator. The proposed computational studies will be 
experimentally validated by the P/FP PI. In her research plan, she will train a series of Bayesian network 
models to estimate individual risk of SUD as well as expected future healthcare utilization. The 
collaboration with the CDAR team members has the potential for developing more advanced tools for SUD 
prevention, prediction and management, which can lead to future grants to establish the P/FP PI as an 
independent scientist. The P/FP PI will also spend significant time focusing on SUD research during the 
training period learning important computational tools. 

P/FP2: “Novel ligands for TRPM8 menthol receptor for smoking cessation” (V. Blair Journigan, PhD, 
Assistant Professor of Medicinal Chemistry, Department of Pharmaceutical Sciences, Marshall University)  

Specific Aims. Dr. Journigan is a new investigator at Marshall University in the Department of 
Pharmaceutical Sciences. The Journigan lab is focused on the discovery of novel small molecule chemical 
probes for the transient receptor potential melastatin 8 (TRPM8) ion channel, commonly known as the 
menthol receptor, to uncover novel therapies for nicotine addiction and neuropathic pain. The project will 
benefit from the expertise and resources developed in Cores A and B. The P/FP PI, assisted by Core A-
B members, will first focus on modeling stimuli-dependent structural changes resulting in activation of the 
channel, to gain a structure-based understanding of conformational rearrangements that may play a role 
in opening/closing. Subsequent work will focus on docking and molecular dynamics (MD) simulations of 
TRPM8 agonist and antagonist ligands in our human TRPM8 homology model based on the avian cryo-
EM structure (PDB 6BPQ), including our novel antagonist scaffolds, to gain a structure-based 
understanding of the molecular determinants for ligand recognition. The Journigan lab is interested in 
elucidating a pharmacophore model for TRPM8 ligands, based on their predicted binding epitopes in the 
putative orthosteric site, and the tool Pharmmaker newly developed by Core B as part of the highly 
versatile and broadly used ProDy API, will be utilized. These computational studies will enable structure-
based design of novel menthol-based chemotypes. Targets identified in silico will be synthesized by the 
P/FP PI, and evaluated in binding, calcium flux and whole-cell patch clamp assays in cross-disciplinary 
collaborations with her laboratory. The aims of this project are:  

Aim 1. To model temperature-, ligand-, and voltage-dependent structural changes responsible for opening 
and closing of the TRPM8 channel.  

Aim 2. To determine the molecular basis for small molecule ligand recognition for agonist and antagonist 
profiles, guided by molecular docking and MD simulations in our hTRPM8 homology model. 

Aim 3. To design and synthesize high affinity, selective menthol-based TRPM8 chemical probes, via 
molecular docking and MD simulations, iterative SAR studies, and TargetHunter, DrugGui and 
Pharmmaker technologies. 

Background and Significance. The monoterpenoid (α)-menthol, a non-selective agonist of transient 
receptor potential melastatin 8 (TRPM8), is a common and popular additive in cigarettes, and found in 

      
           Figure 2. Computational approaches and workflow to identify novel TRPM8 ligands 

 Reported TRPM8 ligands

O

N
N

O

O

NH2

N
N

CF3

O

H
N CF3

Core A, P/F PI: Docking & MD

Pharmacophores and structure-
based design of novel chemotypes

P/F PI

R2

R1

Synthesis and in vitro assays

P/F PI + collaborators

0 100 200 300 400

0.0

2.0

4.0

6.0

8.0 Control

Compound-104B

Compound-104TB

Compund-103

RQ-203078

2mM Ca
2+

Icilin (500nM)

recording duration (s)

fl
u
ro

s
c
e

n
c
e

 r
a
tio

 (
F

3
5

5
/F

3
8

0
)

R2

R1Target Hunter to address
selectivity

Core A, P/F PI

Core B, P/F PI: TRPM8 dynamics



109 

 
90% of tobacco products regardless of being labeled either menthol or non-menthol. Recent FDA 
evaluations of the health risks of menthol cigarettes state that menthol has drug-like characteristics 
associated with increased addiction and dependence to nicotine. Clinical and epidemiological studies of 
menthol vs. non-menthol smokers have found that menthol smokers have consistently lower abstinence 
rates and increased dependence to cigarette smoking, suggesting that menthol in cigarettes supports 
facilitation and maintenance of smoking behaviors. In rodents, menthol is a counter-irritant against the 
harsh effect of cigarette smoke and oral nicotine via its TRPM8 agonist activity, likely allowing for longer 
smoke retention and giving greater exposure to nicotine. TRPM8 activators such as oral menthol, cold 
temperature (11oC) and partial agonist WS-23 increase nicotine intravenous self-administration, while oral 
menthol induces a nicotine extinction burst, and reinstates extinguished nicotine-seeking behavior via its 
cooling sensation in rats, suggesting an interplay between TRPM8 and nAChRs beyond the sensory 
effects discussed above. We hypothesize that menthol-based chemical probes, specifically antagonists, 
may be useful tools to investigate TRPM8-mediated effects on nicotine pharmacology, and inhibit the 
counterirritant and reinforcing effects of menthol. In turn, these chemical probes may uncover a novel 
target for nicotine addiction and provide small molecule lead scaffolds for smoking cessation medications. 
Currently, no high affinity (in the nanomolar range), selective TRPM8 ligands based on the natural ligand 
menthol exist to investigate these effects.  

Computations and Benefits from the CDAR Center. The proposed P/F research will benefit from Cores 
A and B of the CDAR Center through the following collaborations: (i) To determine conformational 
rearrangements resulting from cold temperature, ligand, and voltage stimuli leading to TRPM8 channel 
activation. The P/FP PI and Core A propose to work together to explore the dynamics of channel opening 
and closing, which will allow for a mechanistic understanding of activation/inactivation and ion 
conductance. (ii) To perform docking and MD simulations on reported TRPM8 scaffolds, followed by 
structure-based pharmacophore generation. This work will be done by the P/FP PI and Cores A and B, 
using Amber, Desmond, the Schrödinger Small Molecule Drug Discovery suite as well as DrugGui and 
Pharmmaker. An understanding of ligand recognition in our human TRPM8 homology model will allow for 
the rational design of novel TRPM8 chemotypes. (iii) To perform docking on designed TRPM8 ligands, in 
order to prioritize their synthesis, and screen identified hit compounds for off-target activity. This work will 
be done by the P/FP PI and Cores A and B, using Amber, Desmond, TargetHunter, and BalestraWeb. 
Specifically, designed ligands will be prioritized for synthesis by the P/FP PI based on their docking scores 
within our model, then evaluated in vitro for binding and functional activity in her collaborators’ laboratories. 
SAR analysis will be performed in an iterative manner. Compounds displaying binding and functional 
activity less than 1 μM will be profiled for potential off-target activity. The Core A PI (Dr. Xie) has expertise 
in computational drug discovery for the TRP channel TRPV1 (capsaicin receptor), including the molecular 
docking studies proposed. The P/FP PI will also use her expertise in structure-based drug discovery and 
design.  
 
Experimental Validations by P/FP Investigator. The proposed computational studies will be 
experimentally validated by the P/FP PI. She will use a synthetic medicinal chemistry approach coupled 
with detailed pharmacological characterization in human TRPM8 cell lines, including direct in vitro binding 
studies by NMR, calcium flux assays, and whole-cell patch clamp electrophysiology. These studies will be 
useful to identify high affinity, selective menthol-based TRPM8 chemical probes. She proposes to use 
established synthetic methodology in the menthol literature to access the targets of interest and for analog 
synthesis. The collaboration with CDAR team has the potential for identifying small molecule menthol-
based probes that can be used as tools to study the role of menthol in facilitating nicotine addiction, that 
can lead to future grants as an independent scientist. The proposed experiments could also lead to novel 
smoking cessation medications, by virtue of their small molecule templates. The P/FP PI will also spend 
significant time during the training period learning important computational tools for her research. 

 

PLANS FOR NEXT REPORTING PERIOD  

The Core D leaders will continue to provide supports to facilitate and accelerate the research activities of 
new and burgeoning investigators in the field of Drug Abuse Research (DAR) by helping them incorporate 
cutting-edge computational tools into their research programs. Core D will work closely with P/F Project 
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PIs to help them advance their research and secure funding for their work. On a broader level, Core D will 
facilitate the effective dissemination of CDAR data and tools and promote their use to the broader DAR 
community, and will also help identify new projects to be included in the P/FP Program.  
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