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•Background: confounding factors in the data

•Solutions:
• With labels of confounding factors

• With knowledge of confounding factors

• At the least informed situation
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Confounding Factors in GWAS

•Chopstick usage behavior prediction from genetics
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(Vilhjálmsson and Nordborg, 2013) 



Confounding Factors in GWAS

• (Weale et al 2002)

• In a large data collection drawn from Great Britain:
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We have a 
problem now!

Gennym broblem yn
awr.



Deep Learning Era and Prediction Tasks

• “Universal Approximation” can consider anything as a 
predictive signal 

•Confounding variables can degrade generalization 
performance of radiological deep learning models 
• (Zech et al, 2018) 

•Removing confounding factors associated weights in deep 
neural networks improves the prediction accuracy for 
healthcare applications 
• (Wang et al, 2019)
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High Frequency Component Helps Explain 
the Generalization of Convolutional Neural 

Networks

• Haohan Wang, Xindi Wu, Zeyi Huang, and Eric P. Xing

• https://arxiv.org/abs/1905.13545
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https://arxiv.org/abs/1905.13545


CNN’s tendency in high-frequency data
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CNN’s tendency in high-frequency data
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High-frequency Component Helps Explain the 
Generalization of Convolutional Neural Networks

•Take home messages:
• CNN sees data differently form human 

• Accuracy should not be the only thing to aim at

• Trade-off between accuracy and robustness

• New explanations to previously elusive facts:

• Rethinking data before rethinking generalization

• The effectiveness of Batch Normalization

• The underlying cause of adversarial vulnerability

• https://arxiv.org/pdf/1905.13545.pdf
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https://arxiv.org/pdf/1905.13545.pdf


Confounding Factors in Data

•Where the problem comes from
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label Data

distribution-specific 
correlation

how nature (human) 
defines the label

what a model picks up

Data

“superficial”

“semantic”
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Problem Setup: a Sentiment Classification
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With Labels of Confounding Factors
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Training Data

Testing Data
data

labels

Extra information: we also have labels of the background 



Solution: forcing invariance towards the 
labels of confounding factors

•Solutions:
• Domain Adversarial Neural Network

• https://arxiv.org/abs/1505.07818

• Select-Additive Learning
• https://arxiv.org/abs/1609.05244

• Confounder Filtering Method
• https://www.ncbi.nlm.nih.gov/pubmed/30864310
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Domain Adversarial Neural Network

•Forcing invariance through negative gradient
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Supervised Adversarial Alignment of Single-
Cell RNA-seq Data

• Songwei Ge, Haohan Wang, Amir Alavi, Eric P. Xing, and Ziv Bar-Joseph

• RECOMB 2020

• https://www.biorxiv.org/content/10.1101/2020.01.06.896621v1
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https://www.biorxiv.org/content/10.1101/2020.01.06.896621v1


Background

•Challenges of scRNA analysis:
• How to integrate and compare results from multiple scRNA-

seq studies
• Batch effects as confounding factors

•Available Data:
• scRNA data, cell types, batch ids
• We build a model to classify cell types, invariant to batch 

information
• So that the representation is more about the cell’s nature, less about 

the batch effects

National Center of Excellence for Computational Drug Abuse Research haohanw@cs.cmu.edu 18



Model
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Algorithm: Conditional Domain 
Generalization

•Only two types of sample pairs are 
considered
• Samples from the same domain, with 

different cell types

• Samples from different domains, 
with the same cell type
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Results

•Numerical results: cell type classification accuracy

•Visualization

•Key Gene Analysis
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With Knowledge of Confounding Factors
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Training Data

Testing Data
data

labels

Extra information: we also have labels of the background 

The background is 
probably not 

relevant here!



Solution: a two-step strategy

• First model the confounding factors only
• Neural-GLCM

• texture of image

• https://arxiv.org/abs/1903.06256

• Patchwise Adversarial Regularization
• local predictive pattern of images

• https://arxiv.org/abs/1905.13549

• Then throw it away
• Through regression
• Through adversarial regularization
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Regression Technique (HEX)

•Prediction with the regression residual
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Conveniently done with one line of code

https://arxiv.org/abs/1903.06256


Deep Mixed Model for Marginal Epistasis 
Detection and Population Stratification 
Correction in Genome-wide Association 

Studies

• Haohan Wang, Tianwei Yue, Jingkang Yang, Wei Wu, and Eric P. Xing 

• BMC Bioinformatics 2019

• https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3300-9
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https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3300-9


Background

•Deep learning offers an effective way in modeling 
epistasis
• But GWAS naturally has the confounding issues of 

population stratification, family structure, and cryptic 
relatedness

• How do we deal with it within the neural network regime
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Design Rationale & Model

•Traits are associated with SNPs
• Only a couple of SNPs matter

• Locus-specific effect sizes
• Lasso (across the whole genome) + LSTM 

•Population structure is associated with SNPs
• A large number SNPs work together

• Locus-independent effect sizes
• Convolution with a large kernel
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Results

•Simulation performance superior to baselines

• Investigation at internal working mechanism 

•Real data study for Alzheimer’s disease
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Poly(A)-DG: a Neural-network-based 
Domain Generalization Method to Identify 
Cross-species Ploy(A) Signal without Prior 

Knowledge

• Yumin Zheng, Haohan Wang, Yang Zhang, Eric P. Xing, and Min Xu

• In preparation
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Background

• Poly(A) Signal
• defining feature of eukaryotic protein-coding genes
• an essential process during mRNA maturation

• promote downstream transcriptional termination
• gene expression can be drastically affected

• a central motif and other flanking, auxiliary elements

• Poly(A) Signal Identification
• An identification of MOTIFs
• Can we identify poly(A) signals across species?

• To reveal the connections between the underlying mechanisms of 
different mammals
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Model Confounding Factors

•A function learns specie distributional information 
without learning motifs
• A simple MLP over data

• But with shuffled sequences as Input
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Original Sequence Shuffled Sequence

Species Signals 0.379±0.006 0.353±0.002

Poly(A) Signal 0.753±0.053 0.534±0.001



Model

•Model Architecture
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Results

•Across-species Prediction
• Train the model over two species
• Predict over a 3rd specie

•Other comparisons
• With limited data
• With imbalanced Data
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What if we have nothing else

National Center of Excellence for Computational Drug Abuse Research haohanw@cs.cmu.edu 36

Training Data

Testing Data
data

labels



Let’s just do it
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Training Data

data
labels VS

VS

VS



Multiple Classifiers
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VS

VS

VS

• At least, one of them is correct
• The correct one has the least 

training error
• So, if we force everyone to be the 

same, and if we force everyone to 
have the smallest training error 
possible… 



Self-Challenging

•We force the model to 
challenge itself 
• Whatever features are most 

helpful
• Don’t use them
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Results

•Results over Standard ImageNet
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Thanks

•Questions?

National Center of Excellence for Computational Drug Abuse Research haohanw@cs.cmu.edu 42


