

Learning Deconfounded Representations through Neural Networks, with Applications in Genetic Data

Haohan Wang

School of Computer Science

Carnegie Mellon University

haohanw@cs.cmu.edu

@HaohanWang

Outline

- Background: confounding factors in the data
- Solutions:
 - With labels of confounding factors
 - With knowledge of confounding factors
 - At the least informed situation

Outline

- Background: confounding factors in the data
- Solutions:
 - With labels of confounding factors
 - With knowledge of confounding factors
 - At the least informed situation

Confounding Factors in GWAS

Chopstick usage behavior prediction from genetics

(Vilhjálmsson and Nordborg, 2013)

Confounding Factors in GWAS

Deep Learning Era and Prediction Tasks

- "Universal Approximation" can consider anything as a predictive signal
- Confounding variables can degrade generalization performance of radiological deep learning models
 (Zech et al, 2018)
- Removing confounding factors associated weights in deep neural networks improves the prediction accuracy for healthcare applications
 - (Wang et al, 2019)

High Frequency Component Helps Explain the Generalization of Convolutional Neural Networks

- Haohan Wang, Xindi Wu, Zeyi Huang, and Eric P. Xing
- <u>https://arxiv.org/abs/1905.13545</u>

National Center of Excellence for Computational Drug Abuse Research

CNN's tendency in high-frequency data

CNN's tendency in high-frequency data

(a) A sample of frog

(b) A sample of mobile

(c) A sample of ship

(d) A sample of bird

(e) A sample of truck

(f) A sample of cat

(g) A sample of airplane

	6.2		1.0					1.0					1.0
airplane				airpla	•				akg	larve			
mobile				mobi	**				-	NH I			
bird				ы	rd .					bird			
					*1					cart-			
deer				de	67					deer			
deg					-					609			
freg				fin						frog			

(h) A sample of ship

High-frequency Component Helps Explain the Generalization of Convolutional Neural Networks

- Take home messages:
 - CNN sees data differently form human
 - Accuracy should not be the only thing to aim at
 - Trade-off between accuracy and robustness
 - New explanations to previously elusive facts:
 - Rethinking data before rethinking generalization
 - The effectiveness of Batch Normalization
 - The underlying cause of adversarial vulnerability
 - <u>https://arxiv.org/pdf/1905.13545.pdf</u>

Confounding Factors in Data

• Where the problem comes from

Outline

• Background: confounding factors in the data

• Solutions:

- With labels of confounding factors
- With knowledge of confounding factors
- At the least informed situation

Problem Setup: a Sentiment Classification

Testing Data

With Labels of Confounding Factors

Extra information: we also have labels of the background

Solution: forcing invariance towards the labels of confounding factors

- Solutions:
 - Domain Adversarial Neural Network
 - <u>https://arxiv.org/abs/1505.07818</u>
 - Select-Additive Learning
 - <u>https://arxiv.org/abs/1609.05244</u>
 - Confounder Filtering Method
 - <u>https://www.ncbi.nlm.nih.gov/pubmed/30864310</u>

Domain Adversarial Neural Network

• Forcing invariance through negative gradient

Supervised Adversarial Alignment of Single-Cell RNA-seq Data

- Songwei Ge, Haohan Wang, Amir Alavi, Eric P. Xing, and Ziv Bar-Joseph
- RECOMB 2020
- <u>https://www.biorxiv.org/content/10.1101/2020.01.06.896621v1</u>

Background

- Challenges of scRNA analysis:
 - How to integrate and compare results from multiple scRNAseq studies
 - Batch effects as confounding factors
- Available Data:
 - scRNA data, cell types, batch ids
 - We build a model to classify cell types, invariant to batch information
 - So that the representation is more about the cell's nature, less about the batch effects

Model

Algorithm: Conditional Domain Generalization

- Only two types of sample pairs are considered
 - Samples from the same domain, with different cell types
 - Samples from different domains, with the same cell type

Results

- Numerical results: cell type classification accuracy
- Visualization

• Key Gene Analysis

Outline

• Background: confounding factors in the data

• Solutions:

- With labels of confounding factors
- With knowledge of confounding factors
- At the least informed situation

With Knowledge of Confounding Factors

Solution: a two-step strategy

- First model the confounding factors **only**
 - Neural-GLCM
 - texture of image
 - <u>https://arxiv.org/abs/1903.06256</u>
 - Patchwise Adversarial Regularization
 - local predictive pattern of images
 - <u>https://arxiv.org/abs/1905.13549</u>
- Then throw it away
 - Through regression
 - Through adversarial regularization

Regression Technique (HEX)

• Prediction with the regression residual

CNN representation

Prediction representation

Conveniently done with one line of code

Deep Mixed Model for Marginal Epistasis Detection and Population Stratification Correction in Genome-wide Association Studies

- Haohan Wang, Tianwei Yue, Jingkang Yang, Wei Wu, and Eric P. Xing
- BMC Bioinformatics 2019
- https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3300-9

Background

- Deep learning offers an effective way in modeling epistasis
 - But GWAS naturally has the confounding issues of population stratification, family structure, and cryptic relatedness
 - How do we deal with it within the neural network regime

Design Rationale

- Traits are associated with SNPs
 - Only a couple of SNPs matter
 - Locus-specific effect sizes

- Lasso (across the whole genome) + LSTM
- Population structure is associated with SNPs
 - A large number SNPs work together
 - Locus-independent effect sizes
 - Convolution with a large kernel

Results

- Simulation performance superior to baselines
- Investigation at internal working mechanism

• Real data study for Alzheimer's disease

Poly(A)-DG: a Neural-network-based Domain Generalization Method to Identify Cross-species Ploy(A) Signal without Prior Knowledge

- Yumin Zheng, Haohan Wang, Yang Zhang, Eric P. Xing, and Min Xu
- In preparation

Background

- Poly(A) Signal
 - defining feature of eukaryotic protein-coding genes
 - an essential process during mRNA maturation
 - promote downstream transcriptional termination
 - gene expression can be drastically affected
 - a central motif and other flanking, auxiliary elements
- Poly(A) Signal Identification
 - An identification of MOTIFs
 - Can we identify poly(A) signals across species?
 - To reveal the connections between the underlying mechanisms of different mammals

Model Confounding Factors

- A function learns specie distributional information without learning motifs
 - A simple MLP over data
 - But with shuffled sequences as Input

	Original Sequence	Shuffled Sequence
Species Signals	0.379±0.006	0.353±0.002
Poly(A) Signal	0.753±0.053	0.534±0.001

Model

• Model Architecture

Results

- Across-species Prediction
 - Train the model over two species
 - Predict over a 3rd specie

- Other comparisons
 - With limited data
 - With imbalanced Data

Outline

- Background: confounding factors in the data
- Solutions:
 - With labels of confounding factors
 - With knowledge of confounding factors
 - At the least informed situation

What if we have nothing else

National Center of Excellence for Computational Drug Abuse Research

Let's just do it

Multiple Classifiers

- At least, one of them is correct
- The correct one has the least training error
- So, if we force everyone to be the same, and if we force everyone to have the smallest training error possible...

Self-Challenging

- We force the model to challenge itself
 - Whatever features are most helpful
 - Don't use them

Results

• Results over Standard ImageNet

ImageNet	backbone	Top-1 Acc ↑	Top-5 Acc \uparrow	$\#$ Param. \downarrow
Baseline	ResNet50	76.13	92.86	25.6M
RSC(ours)	ResNet50	77.18	93.53	25.6M
Baseline	ResNet101	77.37	93.55	44.5M
RSC(ours)	ResNet101	78.23	94.16	44.5M
Baseline	ResNet152	78.31	94.05	60.2M
RSC(ours)	ResNet152	78.89	94.43	60.2M
~		-		

Outline

- Background: confounding factors in the data
- Solutions:
 - With labels of confounding factors
 - With knowledge of confounding factors
 - At the least informed situation

Thanks

• Questions?

