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Outline

» Background: confounding factors in the data

* Solutions:
* With labels of confounding factors
* With knowledge of confounding factors
* At the least informed situation
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Confounding Factors in GWAS

* Chopstick usage behavior prediction from genetic&’s
9

(Vilhjalmsson and Nordborg, 2013)



Confounding Factors in GWAS

* (Weale et al 2002)
* In a large data collection drawn

We have a
problem now!
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Deep Learning Era and Prediction Tasks

* “Universal Approximation” can consider anything as a
predictive signal

* Confounding variables can degrade generalization
performance of radiological deep learning models

* (Zech et al, 2018)

 Removing confounding factors associated weights in deep
neural networks improves the prediction accuracy for
healthcare applications

* (Wang et al, 2019)



High Frequency Component Helps Explain
the Generalization of Convolutional Neural
Networks

« Haohan Wang, Xindi Wu, Zeyi Huang, and Eric P. Xing
* https://arxiv.org/abs/1905.13545
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CNN'’s tendency In high-frequency data
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CNN'’s tendency in high-frequency data
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High-frequency Component Helps Explain the
Generalization of Convolutional Neural Networks

» Take home messages:
* CNN sees data differently form human
 Accuracy should not be the only thing to aim at
 Trade-off between accuracy and robustness

* New explanations to previously elusive facts:
 Rethinking data before rethinking generalization
 The effectiveness of Batch Normalization
» The underlying cause of adversarial vulnerability

e https://arxiv.org/pdf/1905.13545.pdf
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Confounding Factors in Data

* Where the problem comes from

how nature (human)
defines the label

\ “superficial”
what a model picks up \O

i distribution-specific
correlation
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* Solutions:
* With labels of confounding factors



Problem Setup: a Sentiment Classification

Training Data

Testing Data
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With Labels of Confounding Factors

Training Data
\

Testing Data

labels

Extra information: we also have labels of the background
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Solution: forcing invariance towards the
labels of confounding factors

* Solutions:
* Domain Adversarial Neural Network
e https://arxiv.org/abs/1505.07818
* Select-Additive Learning
* https://arxiv.org/abs/1609.05244
 Confounder Filtering Method
e https://www.ncbi.nlm.nih.gov/pubmed/30864310
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Domain Adversarial Neural Network

* Forcing Invariance through negative gradient
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Supervised Adversarial Alignment of Single-
Cell RNA-seq Data

« Songwei Ge, Haohan Wang, Amir Alavi, Eric P. Xing, and Ziv Bar-Joseph
« RECOMB 2020
* https://www.biorxiv.org/content/10.1101/2020.01.06.896621v1
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Background

* Challenges of scRNA analysis:

 How to Integrate and compare results from multiple sCRNA-
seq studies

 Batch effects as confounding factors

* Available Data:
* SCRNA data, cell types, batch ids

* \We build a model to classify cell types, invariant to batch
Information

* So that the representation 1s more about the cell’s nature, less about
the batch effects
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Algorithm: Conditional Domain
Generalization

* Only two types of sample pairs are
considered

« Samples from the same domain, with
different cell types

« Samples from different domains,
with the same cell type




Results

* Numerical results: cell type classification accuracy
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» Key Gene Analysis
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Outline

e Solutions:

* With knowledge of confounding factors



With Knowledge of Confounding Factors

Testing Data

Extra information: we also have labels of the background
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Solution: a two-step strategy

* First model the confounding factors only

 Neural-GLCM

e texture of image
* https://arxiv.org/abs/1903.06256

» Patchwise Adversarial Regularization
* local predictive pattern of images

* https://arxiv.org/abs/1905.13549
* Then throw It away
* Through regression
» Through adversarial regularization
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Regression Technique (HEX)

* Prediction with the regression residual

4

Prediction
representation

CNN Confounding
representation representation

Conveniently done with one line of code
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Deep Mixed Model for Marginal Epistasis
Detection and Population Stratification
Correction in Genome-wide Association
Studies

« Haohan Wang, Tianwel Yue, Jingkang Yang, Wei Wu, and Eric P. Xing

« BMC Bioinformatics 2019
 https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3300-9
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Background

 Deep learning offers an effective way In modeling
epistasis
* But GWAS naturally has the confounding issues of

population stratification, family structure, and cryptic
relatedness

* How do we deal with it within the neural network regime



Design Rationale

» Traits are associated with SNPs | 1.

s NEENDEEERENEEDEEEROEEEE

* Only a couple of SNPs matter ¢ 0EE0EEEEE0EE0EEEEE00EEE
- : (Joininininioiolalolalalalojnjalnjalojoiololo

o LOCUS-SpeCIfIC effect sizes e HEDAEEREENADEAREADEERE

* Lasso (across the whole genome) + LSTM

* Population structure iIs associated with SNPs
* A large number SNPs work together

* Locus-independent effect sizes
« Convolution with a large kernel
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Results

» Simulation performance superior to baselines
* Investigation at internal working mechanism

20 the confounding factor correction component with CFW
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* Real data study for Alzheimer’s disease
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Poly(A)-DG: a Neural-network-based
Domain Generalization Method to Identify
Cross-species Ploy(A) Signal without Prior

Knowledge

* Yumin Zheng, Haohan Wang, Yang Zhang, Eric P. Xing, and Min Xu
* In preparation



Background

 Poly(A) Signal
* defining feature of eukaryotic protein-coding genes

* an essential process during mRNA maturation
« promote downstream transcriptional termination
* gene expression can be drastically affected

* a central motif and other flanking, auxiliary elements

* Poly(A) Signal Identification
* An identification of MOTIFs

 Can we identify poly(A) signals across species?

 To reveal the connections between the underlying mechanisms of
different mammals



Model Confounding Factors

* A function learns specie distributional information
without learning motifs

* A simple MLP over data
 But with shuffled sequences as Input

Species Signals 0.379%0.006 0.35310.002
Poly(A) Signal 0.753+0.053 0.534+0.001



Model

 Model Architecture

Poly(A) Signal

(e.g. AAUAAA)
PremRNA \ %"
o
-.uuu_Lg_l /

824 nodes 32 nodes

flatten

raw DNA sequences

o sGALTAAACS o
One-hot encoding
100 bases 100 bases

ceene Convolution

Softmax

»  Prediction

Poly(A) signal motif

Encoded raw DNA sequences bti‘n()d&s‘
FC layer

contain poly(A) signal 16 feature maps
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Results

* Across-species Prediction "

+ Train the model over two species o —— ~—~"

* Predict over a 3" specie . S

63 A
62 - _— POly[A)'DG
—— CNN-MLP
61 1 —— DeeReCT fine-tune on Human
- DeeReCT fine-tune on Mouse
e Other comparisons 60 ' . . . .
20 40 60 80 100

® With I i m ited data proportion of training sequences
* With imbalanced Data
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Outline

e At the least informed situation



What If we have nothing else

Training Data
\

Testing Data
labels

o
e
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Let’s just do 1t

Training Data
\
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Multiple Classifiers

@6,
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Self-Challenging

Representation Gradient FC Layer Label

~

* \We force the model to
challenge itself

* Whatever features are most
helpful

e Don’t use them

et s et s st ' s, e 5 8
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Results

* Results over Standard ImageNet

ImageNet | backbone [Top-1 Acc 1 |Top-5 Acc 1 |#Param. |
Baseline | ResNet50 76.13 92.86 25.6M
RSC(ours)| ResNet350 77.18 93.53 25.6M
Baseline [ResNetlOl1 77.37 93.55 44.5M
RSC(ours)|ResNetl101 78.23 94.16 44 5M
Baseline [ResNetl52 78.31 94.05 60.2M

RSC(ours)

ResNetl152

78.89

94.43

60.2M
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* Solutions:
* With labels of confounding factors
* With knowledge of confounding factors
* At the least informed situation




Thanks

» Questions?
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