Learning Deconfounded Representations through Neural Networks, with Applications in Genetic Data

Haohan Wang
School of Computer Science
Carnegie Mellon University
haohanw@cs.cmu.edu
@HaohanWang
Outline

• Background: confounding factors in the data
• Solutions:
 • With labels of confounding factors
 • With knowledge of confounding factors
 • At the least informed situation
Outline

• Background: confounding factors in the data

• Solutions:
 • With labels of confounding factors
 • With knowledge of confounding factors
 • At the least informed situation
Confounding Factors in GWAS

• Chopstick usage behavior prediction from genetics

(Vilhjálmsson and Nordborg, 2013)
Confounding Factors in GWAS

• (Weale et al 2002)
• In a large data collection drawn

We have a problem now!

Gennym broblem yn awr.
Deep Learning Era and Prediction Tasks

• “Universal Approximation” can consider anything as a predictive signal

• Confounding variables can degrade generalization performance of radiological deep learning models
 • (Zech et al, 2018)

• Removing confounding factors associated weights in deep neural networks improves the prediction accuracy for healthcare applications
 • (Wang et al, 2019)
High Frequency Component Helps Explain the Generalization of Convolutional Neural Networks

• Haohan Wang, Xindi Wu, Zeyi Huang, and Eric P. Xing
• https://arxiv.org/abs/1905.13545
CNN’s tendency in high-frequency data

Reconstruction

Low frequency components

High frequency components
CNN’s tendency in high-frequency data

(a) A sample of frog
(b) A sample of mobile
(c) A sample of ship
(d) A sample of bird

(e) A sample of truck
(f) A sample of cat
(g) A sample of airplane
(h) A sample of ship
High-frequency Component Helps Explain the Generalization of Convolutional Neural Networks

• Take home messages:
 • CNN sees data differently form human
 • Accuracy should not be the only thing to aim at
 • Trade-off between accuracy and robustness
 • New explanations to previously elusive facts:
 • Rethinking data before rethinking generalization
 • The effectiveness of Batch Normalization
 • The underlying cause of adversarial vulnerability
Confounding Factors in Data

• Where the problem comes from

how nature (human) defines the label

label

Data

“semantics”

“superficial”

distribution-specific correlation

what a model picks up
Outline

• Background: confounding factors in the data
• Solutions:
 • With labels of confounding factors
 • With knowledge of confounding factors
 • At the least informed situation
Problem Setup: a Sentiment Classification

Training Data

data

labels

Testing Data

Haohan Wang

National Center of Excellence for Computational Drug Abuse Research

haohanw@cs.cmu.edu
With Labels of Confounding Factors

Training Data

data

labels

Testing Data

Extra information: we also have labels of the background
Solution: forcing invariance towards the labels of confounding factors

• Solutions:
 • Domain Adversarial Neural Network
 • https://arxiv.org/abs/1505.07818
 • Select-Additive Learning
 • https://arxiv.org/abs/1609.05244
 • Confounder Filtering Method
 • https://www.ncbi.nlm.nih.gov/pubmed/30864310
Domain Adversarial Neural Network

• Forcing invariance through negative gradient
Supervised Adversarial Alignment of Single-Cell RNA-seq Data

- Songwei Ge, Haohan Wang, Amir Alavi, Eric P. Xing, and Ziv Bar-Joseph
- RECOMB 2020
- https://www.biorxiv.org/content/10.1101/2020.01.06.896621v1
Background

• Challenges of scRNA analysis:
 • How to integrate and compare results from multiple scRNA-seq studies
 • Batch effects as confounding factors

• Available Data:
 • scRNA data, cell types, batch ids
 • We build a model to classify cell types, invariant to batch information
 • So that the representation is more about the cell’s nature, less about the batch effects
Model

Cell scRNA Sample X_1

Cell scRNA Sample X_2

scRNA Encoder f_e

Label Classifier f_l

Loss L_l

Loss L_d

GRL

Domain Discriminator f_d

Shared Features Z_1

Shared Features Z_2

Shared Weights θ_e

GRL

Domain Code

$\frac{\partial L_l}{\partial \theta_e}$

$\frac{\partial L_d}{\partial \theta_e}$

$\frac{\partial L_l}{\partial \theta_l}$

$\frac{\partial L_d}{\partial \theta_d}$

$\lambda \frac{\partial L_d}{\partial \theta_d}$

$\lambda \frac{\partial L_d}{\partial \theta_d}$

National Center of Excellence for Computational Drug Abuse Research

haohanw@cs.cmu.edu
Algorithm: Conditional Domain Generalization

• Only two types of sample pairs are considered
 • Samples from the same domain, with different cell types
 • Samples from different domains, with the same cell type
Results

• Numerical results: cell type classification accuracy
• Visualization

• Key Gene Analysis
Outline

• Background: confounding factors in the data

• Solutions:
 • With labels of confounding factors
 • With knowledge of confounding factors
 • At the least informed situation
With Knowledge of Confounding Factors

Training Data

Testing Data

The background is probably not relevant here!

Extra information: we also have labels of the background
Solution: a two-step strategy

• First model the confounding factors only
 • Neural-GLCM
 • texture of image
 • https://arxiv.org/abs/1903.06256
 • Patchwise Adversarial Regularization
 • local predictive pattern of images
 • https://arxiv.org/abs/1905.13549

• Then throw it away
 • Through regression
 • Through adversarial regularization
Regression Technique (HEX)

• Prediction with the regression residual

Conveniently done with one line of code
Deep Mixed Model for Marginal Epistasis Detection and Population Stratification Correction in Genome-wide Association Studies

- Haohan Wang, Tianwei Yue, Jingkang Yang, Wei Wu, and Eric P. Xing
- BMC Bioinformatics 2019
Background

• Deep learning offers an effective way in modeling epistasis
 • But GWAS naturally has the confounding issues of population stratification, family structure, and cryptic relatedness
 • How do we deal with it within the neural network regime
Design Rationale

• Traits are associated with SNPs
 • Only a couple of SNPs matter
 • Locus-specific effect sizes
 • Lasso (across the whole genome) + LSTM

• Population structure is associated with SNPs
 • A large number SNPs work together
 • Locus-independent effect sizes
 • Convolution with a large kernel
Results

• Simulation performance superior to baselines
• Investigation at internal working mechanism

• Real data study for Alzheimer’s disease
Poly(A)-DG: a Neural-network-based Domain Generalization Method to Identify Cross-species Poly(A) Signal without Prior Knowledge

- Yumin Zheng, Haohan Wang, Yang Zhang, Eric P. Xing, and Min Xu
- In preparation
Background

• Poly(A) Signal
 • defining feature of eukaryotic protein-coding genes
 • an essential process during mRNA maturation
 • promote downstream transcriptional termination
 • gene expression can be drastically affected
 • a central motif and other flanking, auxiliary elements

• Poly(A) Signal Identification
 • An identification of MOTIFs
 • Can we identify poly(A) signals across species?
 • To reveal the connections between the underlying mechanisms of different mammals
Model Confounding Factors

• A function learns species distributional information without learning motifs
 • A simple MLP over data
 • But with shuffled sequences as Input

<table>
<thead>
<tr>
<th></th>
<th>Original Sequence</th>
<th>Shuffled Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species Signals</td>
<td>0.379±0.006</td>
<td>0.353±0.002</td>
</tr>
<tr>
<td>Poly(A) Signal</td>
<td>0.753±0.053</td>
<td>0.534±0.001</td>
</tr>
</tbody>
</table>
Model

• Model Architecture
Results

• Across-species Prediction
 • Train the model over two species
 • Predict over a 3rd specie

• Other comparisons
 • With limited data
 • With imbalanced Data
Outline

• Background: confounding factors in the data
• Solutions:
 • With labels of confounding factors
 • With knowledge of confounding factors
 • At the least informed situation
What if we have nothing else

Training Data

data

labels

Testing Data

National Center of Excellence for Computational Drug Abuse Research
haohanw@cs.cmu.edu
Let’s just do it
Multiple Classifiers

- At least, one of them is correct
- The correct one has the least training error
- So, if we force everyone to be the same, and if we force everyone to have the smallest training error possible...
Self-Challenging

• We force the model to challenge itself
 • Whatever features are most helpful
 • Don’t use them
Results

- Results over Standard ImageNet

<table>
<thead>
<tr>
<th>ImageNet</th>
<th>backbone</th>
<th>Top-1 Acc ↑</th>
<th>Top-5 Acc ↑</th>
<th>#Param. ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>ResNet50</td>
<td>76.13</td>
<td>92.86</td>
<td>25.6M</td>
</tr>
<tr>
<td>RSC(ours)</td>
<td>ResNet50</td>
<td>77.18</td>
<td>93.53</td>
<td>25.6M</td>
</tr>
<tr>
<td>Baseline</td>
<td>ResNet101</td>
<td>77.37</td>
<td>93.55</td>
<td>44.5M</td>
</tr>
<tr>
<td>RSC(ours)</td>
<td>ResNet101</td>
<td>78.23</td>
<td>94.16</td>
<td>44.5M</td>
</tr>
<tr>
<td>Baseline</td>
<td>ResNet152</td>
<td>78.31</td>
<td>94.05</td>
<td>60.2M</td>
</tr>
<tr>
<td>RSC(ours)</td>
<td>ResNet152</td>
<td>78.89</td>
<td>94.43</td>
<td>60.2M</td>
</tr>
</tbody>
</table>
Outline

• Background: confounding factors in the data

• Solutions:
 • With labels of confounding factors
 • With knowledge of confounding factors
 • At the least informed situation
Thanks

• Questions?